首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of oxygen addition on the synthesis of diamond are extensively studied by using the hot-filament chemical vapor deposition (HFCVD) method, in which it is simple and easy to control the deposition parameters independently. Diamond films are deposited on silicon wafers under the conditions of substrate temperature 530–950 C; total reaction pressure 700–8000 Pa; and methane concentration 0.4–2.4% in both CH4–H2 and CH4–H2–O2 systems.At deposition conditions of low substrate temperature, high CH4 concentration or high total pressure, soot-like carbon and/or graphite are deposited without oxygen addition. When even a small amount of oxygen (about 0.6%) is added, well-faceted diamond films are observed in scanning electron microscopy micrographs and a sharp diamond peak in the Raman spectra appears. The range of deposition parameters for high-quality diamond syntheses are extended by oxygen addition (low substrate temperature, high methane concentration and high reaction pressure).  相似文献   

2.
A method of controlling the feeding concentration of methane was applied in a hot-filament chemical vapor deposition (HFCVD) in order to improve the nucleation of diamond on the beryllium oxide substrates. The nucleation density and the morphologies of diamond were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) while the thermal conductivities of substrates and the composites were detected by laser-diathermometer. The results show that the diamond thin film is in larger grain size with lower roughness when CH4 and H2 enter the chamber, respectively, rather than as a mixture, and the composites’ conductivity soared by 21%–31% compared with BeO substrates. At the conditions of separated gas entry, several projects with changes of the CH4 flux during depositing were designed to discuss the influence of CH4 concentration on diamond nucleation. The uniform and compact diamond thin films were acquired when the ratio of CH4:H2 at nucleation stage was in the range of 4%–8%.  相似文献   

3.
 We describe herein a new process for the synthesis of diamond in the presence of various metals and atomic H in a microwave plasma. Along with the traditional high pressure high temperature (HPHT) process and the chemical vapor deposition (CVD) process, for diamonds synthesis this makes it a third route for this purpose. Starting materials used are intimate mixtures of various forms of carbon with one of many metals. These are exposed to a pure H2 microwave-assisted plasma at temperatures in the range 600–1100o C. Novel amorphous alloys are formed containing 40 to 70 atomic percent of carbon. From these liquid alloys diamonds are precipitated with temperature change and/or with possible evaporation of complex, hydrogen-rich Me−C−H species. The carbon content of the metallic liquid drops sequentially down to 5–6%C as more and more diamonds are precipitated therefrom. Au, Ag, Fe, Cu, Ni, and many other metals are used in most runs. Others e.g. La, Mn, Sn, each give distinctive habits or morphology to the diamonds grown. Single crystals have been grown from these MexCyHz metallic liquids on natural diamond substrates, using the same low pressure solid state source (LPSSS) technique. They show high perfection. A mechanism is proposed quite analogous to the HPHT process, to explain this precipitation from metallic solutions, with atomic hydrogen ”substituting” for high pressure. Received: 8 April 1997 / Accepted: 8 June 1997  相似文献   

4.
A hot filament plant for chemical vapor deposition of crystalline diamond featuring new operating stages has been built. It allows (i) a separate methane feed locally at substrate position and (ii) supplying a forced gas flow towards the substrate. To understand the effect of these two features on diamond growth, the results of systematic diamond growth experiments are discussed. To reveal the effects of these features on the gas phase, infrared tunable diode laser absorption spectroscopy (IR-TDLAS) was employed. Using a forced gas flow showed a remarkable increase in the diamond growth rate of a factor >6 compared to standard coating setups. By lowering the methane content in the forced flow diamond quality factors >95% were achieved. IR-TDLAS showed an increase of all measured carbon-containing species CH4, C2H2, CH3 and CO when applying the forced flow. The mass transport dominated by diffusion in the standard setup shifts to a convective gas transport in the forced flow setup. The induced laminar flow causes a more effective transport of the growth species to the substrate and leads to higher growth rates. Application of feeding methane locally at substrate position leads to exceptionally high growth rates (0.68 μm/h) at correspondingly high diamond quality (91%). For this, the methane content has to be lowered, though, which at the same time leads to a more homogenous deposition lateral on the surface. From the IR-TDLAS gas phase measurements, a more effective precursor dissociation, a higher CH3 density and a rise in the CH3?C2H2 ratio above the substrate surface can be derived.  相似文献   

5.
《Thin solid films》1987,146(3):283-289
The effect of hydrogen as a dilution gas on the deposition of diamond-like carbon by the decomposition of methane in a microwave discharge was studied from surface analysis of the substrate and from plasma diagnostics. When carbon deposited from a CH4-Ar plasma and consisting of large amounts of graphite and small amounts of diamond, was placed in the hydrogen plasma chemical sputtering of carbon to form hydrocarbons and adsorption of hydrogen on the carbon substrate were observed. The reaction occured only on graphite and not on diamond. The effects of hydrogen as a dilution gas on the deposition of diamond-like carbon from CH4-H2 plasma are to cause the formation of CH3 radicals in the plasma, the removal of graphite from the deposit and the adsorption of atomic hydrogen on the deposit as an active participant in the diamond crystallization process.  相似文献   

6.
Plasma-enhanced chemical vapor deposition of nanocrystalline diamond   总被引:1,自引:0,他引:1  
Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.  相似文献   

7.
Laser chemical vapor deposition (LCVD) of titanium carbide (TiC) coatings onto tantalum substrates using hydrogen gas, titanium tetrachloride (TiCl4) and either methane (CH4) or acetylene (C2H2) source gasses was investigated. The influences of the molar ratio of the source gases and the deposition temperature on the phase assemblage, composition, and morphology of the coatings was examined. Using C2H2, nearly stoichiometric coatings were produced at 1000°C and at a TiCl4/C2H2 ratio of 1/0.4. Stoichiometric coatings were also produced using CH4 but the deposition temperature was 400°C higher and a much larger fraction of the carbon source was required compared to C2H2. Although deposition rates were much slower when using CH4, the coatings exhibited a smoother surface finish and had a higher density compared to those produced using C2H2. The suitability of CH4 and C2H2 as carbon sources for depositing stoichiometric, phase-pure coatings is discussed in light of these results.  相似文献   

8.
Diamond thin films were grown by linear antenna microwave plasma CVD process over large areas (up to 20 × 10 cm2) from a hydrogen based gas mixture. The influence of the gas composition (H2, CH4, CO2) and total gas pressure (0.1 and 2 mbar) on the film growth is presented. For CH4/H2 gas mixtures, the surface crystal size does not show dependence on the methane concentration and total pressure and remains below 50 nm as observed by SEM. Adding CO2 (up to 10%) significantly improves the growth rate. However, still no significant change of morphology is observed on films grown at 2 mbar. The crucial improvement of the diamond film purity (as detected by Raman spectroscopy) and crystal size is found for deposition at 0.1 mbar. In this case, crystals are as large as 500 nm and the growth rate increases up to 38 nm/h.  相似文献   

9.
In this study, diamond films were synthesized on silicon substrates by microwave plasma enhanced chemical vapor deposition (CVD) over a wide range of experimental parameters. The effects of the microwave power, CH4/H2 ratio and gas pressure on the morphology, growth rate, composition, and quality of diamond films were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A rise of microwave power can lead to an increasing pyrolysis of hydrogen and methane, so that the microcrystalline diamond film could be synthesized at low CH4/H2 levels. Gas pressure has similar effect in changing the morphology of diamond films, and high gas pressure also results in dramatically increased grain size. However, diamond film is deteriorated at high CH4/H2 ratio due to the abundant graphite content including in the films. Under an extreme condition of high microwave power of 10 kW and high CH4 concentration, a hybrid film composed of diamond/graphite was successfully formed in the absence of N2 or Ar, which is different from other reports. This composite structure has an excellent measured sheet resistance of 10–100 Ω/Sqr. which allows it to be utilized as field electron emitter. The diamond/graphite hybrid nanostructure displays excellent electron field emission (EFE) properties with a low turn-on field of 2.17 V/μm and β = 3160, therefore it could be a promising alternative in field emission applications.  相似文献   

10.
The nucleation and growth of diamond coatings on pure Ti substrate were investigated using microwave plasma assisted chemical vapor deposition (MW-PACVD) method. The effects of hydrogen plasma, plasma power, gas pressure and gas ratio of CH4 and H2 on the microstructure and mechanical properties of the deposited diamond coatings were evaluated. Results indicated that the nucleation and growth of diamond crystals on Ti substrate could be separated into different stages: (1) surface etching by hydrogen plasma and the formation of hydride; (2) competition between the formation of carbide, diffusion of carbon atoms and diamond nucleation; (3) growth of diamond crystals and coatings on TiC layer. During the deposition of diamond coatings, hydrogen diffused into Ti substrate forming titanium hydride and led to a profound microstructure change and a severe loss in impact strength. Results also showed that pre-etching of titanium substrate with hydrogen plasma for a short time significantly increased the nuclei density of diamond crystals. Plasma power had a significant effect on the surface morphology and the mechanical properties of the deposited diamond coatings. The effects of gas pressure and gas ratio of CH4 and H2 on the nucleation, growth and properties of diamond coatings were also studied. A higher ratio of CH4 during deposition increased the nuclei density of diamond crystals but resulted in a poor and cauliflower coating morphology. A lower ratio of CH4 in the gas mixture produced a high quality diamond crystals, however, the nuclei density and the growth rate decreased dramatically.  相似文献   

11.
Hydrogen-incorporated nanocrystalline diamond thin films have been deposited in microwave plasma enhanced chemical vapour deposition (CVD) system with various hydrogen concentrations in the Ar/CH4 gas mixture. The bonding environment of carbon atoms was detected by Raman spectroscopy and the hydrogen concentration was determined by elastic recoil detection analysis. Incorporation of H2 species into Ar-rich plasma was observed to markedly alter the microstructure of diamond films. Raman spectroscopy results showed that part of the hydrogen is bonded to carbon atoms. Raman spectra also indicated the increase of non-diamond phase with the decrease in crystallite size. The study addresses the effects of hydrogen trapping in the samples when hydrogen concentration in the plasma increased during diamond growth and its relation with defective grain boundary region.  相似文献   

12.
Diamond deposition on WC-Co cemented carbide was examined by chemical vapour deposition using a tantalum filament. The filament was much superior to conventional tungsten filament for high-temperature use. Diamond film was deposited at a filament temperature up to about 2600 °C for tantalum filament, which was much higher than the maximum filament temperature available for tungsten (2000 °C). The critical methane concentration in H2-CH4 gas for diamond deposition became higher with increasing filament temperature. A deposition rate about 20 times higher was obtained when using a tantalum filament compared with a tungsten filament. The origin of the improved deposition rate of diamond on WC-Co substrate using a tantalum filament is discussed.  相似文献   

13.
Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD) of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.  相似文献   

14.
The possibility of using a gas discharge such as a corona discharge or a barrier discharge for decomposition of methane in different gaseous mixtures is investigated theoretically. The effect of preheating of the gas to a temperature of 1200 K on the degree of methane conversion in the discharge is studied. A kinetic model that describes the processes of methane decomposition and oxidation in CH4/CO2, CH4/H2O, and CH4/O2 mixtures is developed. The effect of the discharge parameters and gas additives on the efficiency of methane decomposition is investigated. The optimum temperature of the mixture, particle lifetime, and initial concentration of oxygen for the production of hydrogen molecules are found. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 71, No. 6, pp. 1016–1023, November–December, 1998.  相似文献   

15.
Diamond coating on Ti-6Al-4V alloy was carried out using microwave plasma enhanced CVD with a super high CH4 concentration, and at a moderate deposition temperature close to 500 °C. The nucleation, growth, adhesion behaviors of the diamond coating and the interfacial structures were investigated using Raman, XRD, SEM/TEM, synchrotron radiation and indentation test. Nanocrystalline diamond coatings have been produced and the nucleation density, nucleation rate and adhesion strength of diamond coatings on Ti alloy substrate are significantly enhanced. An intermediate layer of TiC is formed between the diamond coating and the alloy substrate, while diamond coating debonding occurs both at the diamond-TiC interface and TiC-substrate interface. The simultaneous hydrogenation and carburization also cause complex micro-structural and microhardness changes on the alloy substrates. The low deposition temperature and extremely high methane concentration demonstrate beneficial to enhance coating adhesion strength and reduce substrate damage.  相似文献   

16.
We carried out thermodynamic analysis of reactions underlying the preparation of pyrolytic carbon from a number of carbon-containing compounds and experimentally determined the optimal temperature range for the deposition of thin (1–3 μm) pyrolytic carbon layers onto continuous silicon carbide fibers. The results indicate that, among the compounds studied, the highest deposition rate of pyrolytic carbon is ensured by the pyrolysis of toluene and n-heptane. The slowest deposition rate is observed in methane pyrolysis. Rate data are used to determine the apparent activation energies for the pyrolysis of C7H8, C7H16, (CH3)2CO, CCl4, and CH4. Original Russian Text ? P.M. Silenko, A.N. Shlapak, V.P. Afanas’ev, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 3, pp. 288–291.  相似文献   

17.
Diamond films with fine grain size and good quality were successfully deposited on pure titanium substrate using a novel two-step growth technique in microwave plasma-assisted chemical vapor deposition (MWPCVD) system. The films were grown with varying the methane (CH4) concentration at the stage of bias-enhanced nucleation (BEN) and nano-diamond film deposition. It was found that nano-diamond nuclei were formed at a relatively high methane concentration, causing a secondary nucleation at the accompanying growth step. Nano-diamond film deposition on pure titanium was always very hard due to the high diffusion coefficient of carbon in Ti, the big difference between thermal expansion coefficients of diamond and Ti, the complex nature of the interlayer created during diamond deposition, and the difficulty in achieving very high nucleation density. A smooth and well-adhered nano-diamond film was successfully obtained on pure Ti substrate. Detailed experimental results on the synthesis, characterization and successful deposition of the nano-diamond film on pure Ti are discussed.  相似文献   

18.
Diamond films were provided by a hot filament thermal chemical vapour deposition method with an H2-CH4 gas mixture under various reaction conditions: CH4/H2 ratios of 0.5% and 1.0%, Si and Cu substrates, a substrate temperature of 750 °tC, a pressure of 7 torr and a reaction time of 12 h. TEM observation showed that the films produced have many defects such as twins, stacking faults and large distortion of lattices. These defects, which increase with increasing CH4 concentration, seem to be introduced during the crystal growth process. Fivefold symmetry twinned crystals were often observed in the diamond films.  相似文献   

19.
Multiwall carbon nanotubes (CNTs) were grown by the plasma-enhanced chemical vapor deposition (PECVD) method in downstream on the p-Si (100) substrate. Besides precursors, methane as the carbon source and hydrogen as the ablation, oxygen or H2O was alternatively inlet into the reactive chamber at the pressure of 0.05 MPa. Given characterizations of the tube structure and tube mass weight, the role of radical atomic O, hydroxyl and perhydroxyl in multiwall CNT growth was explored. In addition to a small amount of O2 (∼0.67%) or H2O (∼0.1%), it was found that a high quantity of pure nanotubes can be grown in the downstream. However, no nanotube could be formed or even the carbon matrix generated when the concentration of O2 or H2O exceeded a proper value in the mixture. The mechanism of multiwall CNT growth controlled by active radicals was explored in this paper.  相似文献   

20.
Laser-induced pyrolysis has been utilized to create gas-surface chemical reactions necessary for diamond deposition on electronic materials. A 1200 W CO2 gas laser has been used as an energy source for depositing diamond thin films from a gas mixture of CH4 and H2 in a chemical vapour deposition chamber. The substrate temperature was about 500°C. The laser beam energy was largely absorbed by the gases that lead to their excitation and decomposition on contact with the nearby hot substrate. Raman spectroscopy and scanning electron microscope analysis revealed high quality, fine crystalline diamond structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号