首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以三元乙丙橡胶接枝马来酸锌离聚物(EPDM-g-MAZn)为界面改性剂,制备了热塑性聚烯烃弹性体/氢氧化镁[TPO/Mg(OH)2]复合体系。通过扫描电镜(SEM)、拉伸断裂强度、断裂伸长率、氧指数(LOI)、垂直燃烧、热失重(TG)分别研究了不同用量EPDM-g-MAZn对TPO/Mg(OH)2复合体系结构与性能的影响。SEM分析表明:加入EPDM-g-MAZn离聚物的复合体系分散更均匀,提高了复合体系的界面相容性。力学性能研究表明:当离聚物用量为9份[以Mg(OH)2质量为100份计算,下同],断裂伸长率可以达到226%,拉伸断裂强度可以达到2.5 MPa;阻燃性能及TG结果表明:氧指数可以达到26.8%,垂直燃烧级别可以达到V-0级,无烟且无熔滴,炭层最致密,此时的阻燃性能最佳。  相似文献   

2.
研究了3种粒径的Mg(OH)2阻燃剂对聚异丁烯/低密度聚乙烯(PIB/LDPE)体系性能的影响。发现随着Mg(OH)2用量的增加,体系的极限氧指数(LOI)增加,拉伸强度和断裂伸长率下降;Mg(OH)2的粒径对体系的LOI影响不明显,但对力学性能的影响较明显,阻燃剂粒径越大,材料的力学性能下降越多。将Mg(OH)2与红磷复配用于PIB/LDPE体系,发现具有明显的阻燃增效作用。探讨了红磷、Mg(OH)2在此类聚烯烃体系中的阻燃增效机理。  相似文献   

3.
以聚丙烯为基体,比较研究了添加本研究室自制的低成本纳米Mg(OH)_2与市售普通微米级Mg(OH)_2的阻燃性能和力学性能,结果表明在聚内烯中添加相同质量分数的Mg(OH)_2时,纳米级Mg(OH)_2具有较好的阻燃性能和力学性能,氧指数可以达到23%,拉伸断裂伸长率和冲击强度分别是添加普通Mg(OH)_2的2.2倍和1.8倍。  相似文献   

4.
Al(OH)3和Mg(OH)2阻燃EVA性能的研究   总被引:1,自引:0,他引:1  
选用形貌、粒径尺寸及分布相近的两种无机阻燃剂氢氧化铝(Al(OH)3)和氢氧化镁(Mg(OH)2),研究了二者用量对乙烯-醋酸乙烯酯共聚物(EVA)复合材料的力学性能和阻燃性能的影响,并比较了添加红磷的复合材料的力学性能和阻燃性能。研究表明:Al(OH)3和Mg(OH)2用量对复合材料性能影响比较相似,随着阻燃剂用量的增加,复合材料的阻燃性能提高,拉伸强度增加,但断裂伸长率下降;通过锥形量热仪数据看出:Al(OH),的点燃时间短,最大热释放速率和平均热释放速率低,火行为指数大,阻燃效果比Mg(OH)2好;红磷的加入对复合材料力学性能影响不大,而对阻燃性能影响较大。Mg(OH)2与红磷复配能提高复合材料的氧指数,但是,从水平和垂直燃烧角度考虑,Al(OH)3与红磷之间的阻燃协效效果更好。  相似文献   

5.
纳米Mg(OH)_2对PVC泡沫塑料力学性能的影响   总被引:1,自引:0,他引:1  
在一定的PVC泡沫塑料配方体系下,研究了阻燃材料纳米Mg(OH)2 对PVC泡沫材料的主要力学性能的影响。结果表明,在25℃,纳米Mg(OH)2 添加量在1. 5%以下,对拉伸强度、断裂伸长率两项指标基本没有影响;在105℃,纳米Mg(OH)2 添加量在2. 0 %以下,对热负荷下伸长率、冷却后永久伸长率两项指标基本没有影响。  相似文献   

6.
采用低密度聚乙烯/乙烯-醋酸乙烯(PE-LD/EVA)为电缆料的主体基材,氢氧化镁[Mg(OH)2]为主阻燃剂,研究了乙烯-辛烯共聚物(POE)和有机蒙脱土(OMMT)对电缆料力学性能和阻燃性能的影响;并利用γ射线交联技术,探讨了辐射剂量对材料力学性能和阻燃性能的影响。结果表明,随着POE用量的增加,材料的拉伸强度和断裂伸长率增加,但硬度降低;OMMT的添加量为4份时,其与Mg(OH)2可以产生最佳的协同效应,改善了材料的力学性能和阻燃性能;当辐照剂量在90~100 kGy时,PE-LD/EVA/Mg(OH)2/OMMT=50/50/60/4的共混体系的综合性能达到比较理想的水平,其极限氧指数超过32 %,拉伸强度为11 MPa,断裂伸长率超过900 %。  相似文献   

7.
表面改性方法对PP/Mg(OH)2无卤阻燃体系性能的影响   总被引:11,自引:0,他引:11  
以聚丙烯(PP)为基体树脂,加入采用不同表面改性方法处理的氢氧化镁[Mg(OH)2]制备无卤阻燃PP复合材料。探讨了化学法和辐射法对PP/Mg(OH)2无卤阻燃复合材料阻燃性能和力学性能的影响。结果表明,用烷烃类偶联剂Ao-03进行表面改性的PP/Mg(OH)2具有较好的阻燃性能和力学性能,氧指数可以达到23.8%;拉伸强度变化不大,断裂伸长率达20%,是未处理PP/Mg(OH)2的9.5倍;冲击强度也最高,为未处理PP/Mg(OH)2的7倍。  相似文献   

8.
氢氧化镁用磷腈化合物增效阻燃聚丙烯   总被引:1,自引:0,他引:1  
为了以较低成本制得阻燃性能和力学性能皆优的Mg(OH)2无卤低烟阻燃聚丙烯,本试验对微细粒Mg(OH)2复配少量有机磷腈化合物,用较少的添加量对聚丙烯阻燃改性,制得的阻燃聚丙烯材料的氧指数达35.5%,而未复配有机磷腈化合物的比较例的氧指数仅23.5%;同时实例的燃烧发烟变得显著清淡,拉伸强度变化很小,断裂伸长率和缺口冲击强度显著提高。  相似文献   

9.
分别采用三聚氰胺氰尿酸盐(MCA)、微胶囊红磷(MCP)以及氢氧化镁[Mg(OH)2]等与膨胀型阻燃剂PNP进行复配,研究了不同阻燃剂及其配比对低密度聚乙烯/乙烯-醋酸乙烯酯(PE-LD/EVA)共混物的阻燃和力学性能的影响。结果表明,在PE-LD/EVA为70/30的基体树脂中,当复合阻燃剂的含量为35%时,PNP/MCA的最佳配比为3/2,阻燃材料的极限氧指数为30.8%;PNP/MCA/MCP的最佳比例为24/16/4,阻燃材料极限氧指数为32.3%;PNP/MCA/MCP/Mg(OH)2的最佳比例为24/16/4/22,阻燃材料的极限氧指数为30.9%,垂直燃烧达到UL 94V-0级,拉伸强度为11.1MPa,断裂伸长率为80.6%。  相似文献   

10.
研究了Al(OH)3,Mg(OH)2包覆红磷(10份)对苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)/聚苯乙烯(PS)阻燃性能的影响.结果表明,Mg(OH)2用量为80份时阻燃级别达V-2,氧指数达到29%,但力学性能较差;AI(OH)3用量为80份时阻燃效果不很理想,但对力学性能影响较小;Mg(OH)2/Al(OH)3/包覆红磷体系中Mg(OH)2用量大于Al(OH)3时综合阻燃效果最好.阻燃体系的热释放速率降低,有效燃烧热出现峰值延后.  相似文献   

11.
选用纳米氢氧化镁(Mg(OH)2)、有机纳米蒙脱土、EPDM弹性体以及玻璃纤维与纳米氢氧化铝[Al(OH)3]进行复配,并与聚己内酰胺共混形成PA6/纳米Al(OH)3复合材料。用均匀设计U12(I2^4)来安排实验,得到表征复合材料阻燃性能的氧指数数据和表征复合材料力学性能的冲击强度、拉伸强度,断裂伸长率、拉伸弹性模量等数据。利用数学模型得到复配物的添加量与材料阻燃性能和力学性能之间的函数关系。验证实验结果显示回归方程的优化值与验证实验的测定值吻合良好。说明均匀设计能够利用较少的实验次数来揭示复配物的添加量与材料阻燃性能和力学性能之间关系。  相似文献   

12.
研究了纳米碳酸钙(CaCO3)和无卤阻燃剂六苯氧基环三磷腈(POP)对聚丙烯(PP)/氢氧化镁(Mg(OH)2)复合材料力学性能和燃烧性能的影响。结果表明:保持无机粒子总量90份,随着纳米 CaCO3含量的增加,材料的力学性能先提高后降低,在其含量为40份时达到最佳值。POP 的加入可减少 Mg(OH)2用量,同时可进一步提高 PP/Mg(OH)2复合材料的力学性能和阻燃性能,当 POP 用量为8份时,复合材料的断裂伸长率、拉伸强度、冲击强度和氧指数分别可达264.76%、22.34 MPa、48.65 kJ/m~2、28.2%。  相似文献   

13.
研究了聚四氟乙烯 (PTFE)对Mg(OH) 2 /Al(OH) 3 填充硅橡胶阻燃性能和力学性能的影响。结果表明 ,PTFE不但能够改善硅橡胶的阻燃性能 ,而且还能使力学性能尤其是撕裂强度得到显著提高。当PTFE用量为 2 .5份 (质量 ) ,撕裂强度达17.1kN·m-1,比不含PTFE的试样提高了 5 1% ,而且其极限氧指数也有一定增加  相似文献   

14.
采用改性氧氧化镁[Mg(OH)2]、微胶囊化红磷(MRP)和热翅性酚醛树脂(PF-T)制备了阻燃线性低密度聚乙烯(LLDPE)复合材料体系,探讨了PF-T、MRP与Mg(OH)2不同的配比对LLDPE复合材料体系的阻燃性能、力学性能和热失蓖性能的影响,并对复合材料的微观结构进行了分析.结果表明:PF-T:MRP:Mg(OH)2质量比为25:8:40时协效最佳,氧指数达到33.7%,水平燃烧通过FH-1,拉伸强度达17 MPa,断裂伸长率为350%;协效阻燃体系提高了复合材料的质量保持率,降低了失重速率;PF-T与LLDPE相容性好,界面不明显,无机组分在基体材料中有好的分散性.  相似文献   

15.
制备了丙烯酸(AA)接枝线型低密度聚乙烯(PE–LLD)(PE–g–AA)高分子偶联剂,并将其用于改性PE–LLD/Al(OH)3复合材料。研究了PE–g–AA对PE–LLD/Al(OH)3复合材料的微观结构、力学性能、流变行为、电气绝缘性能的影响,并探讨了复合材料力学性能、电气绝缘性能和界面微观结构之间的关系。研究结果表明,PE–g–AA偶联剂显著改善了Al(OH)3填料与PE–LLD基体之间的界面作用机制,不但提高了复合材料的拉伸和冲击强度,而且增加了复合材料的断裂伸长率。另外,PE–g–AA提高了Al(OH)3在聚合物基体的分散性并作为绝缘层减少了填料之间的相互接触,因而获得的复合材料的电气绝缘性能在低偶联剂的掺量下大幅提升,达到电气绝缘性能要求。  相似文献   

16.
Al(OH)3对APP/MPP/PER体系阻燃LDPE性能的影响   总被引:1,自引:1,他引:0  
将恒温聚合得到的聚磷酸三聚氰胺(MPP)与多聚磷酸铵(APP)、季戊四醇(PER)以质量比5/4/3复配组成膨胀型阻燃剂(IFR),用于阻燃低密度聚乙烯(LDPE).研究了不同添加量的Al(OH)3对阻燃HDPE体系的阻燃效果的影响,以及阻燃材料的燃烧性、热稳定性、力学性能.结果表明:当添加的膨胀型阻燃剂量为18%,Al(OH),添加量为4%时,阻燃HDPE的氧指数可以达到26%,可通过Ⅵ级测试,且力学性能优良,热稳定性得到明显改善.  相似文献   

17.
Mg(OH)2与包覆红磷协效阻燃PP/PA6复合材料的研究   总被引:1,自引:0,他引:1  
研究了包覆红磷和Mg(OH)2/包覆红磷复配体系对聚丙烯/尼龙6(PP/PA6)合金性能的影响,分析了不同阻燃体系对PP/PA6合金的阻燃性能和力学性能的影响,选用热塑性弹性体POE-g-MAH对阻燃PP/PA6复合材料进行了增韧改性.结果表明:Mg(OH)2与包覆红磷能协效阻燃PP/PA6复合体系,当包覆红磷添加量为15份.Mg(OH)2为30份时,PP/PA6复合材料的氧指数从19.2%提高到27.5%;POE较好地改善了材料的冲击性能,其添加量为15份时,材料的冲击强度可由3.4 kJ/m2增大至8.6 kJ/m2,并保持良好的阻燃性能.  相似文献   

18.
将Mg(OH)2、弹性体接枝物、抗氧剂与尼龙6(PA6)共混制得阻燃PA6/Mg(OH)2复合材料,探讨了两种弹性体接枝物对PA6/Mg(OH)2复合材料力学性能和阻燃性能的影响。结果表明,加入弹性体接枝物A比加入钛酸酯偶联剂可以明显提高PA6/Mg(OH)2复合材料的阻燃性能和某些力学性能。Mg(OH)2用量为20%时,加入弹性体接枝物A的复合材料的极限氧指数可达到38.4%;缺口冲击强度和断裂伸长率比加入钛酸酯偶联剂时分别提高了64.6%和172.4%。  相似文献   

19.
Mg(OH)_2阻燃热塑性聚烯烃弹性体的研究   总被引:1,自引:0,他引:1  
采用5种表面处理剂对氢氧化镁(Mg(OH)2)进行表面改性,并以热塑性聚烯烃弹性体(TPO)为基体树脂,制备了TPO/Mg(OH)2阻燃材料。通过氧指数(OI)、垂直燃烧和拉伸性能测试,研究了表面处理剂的种类、Mg(OH)2用量和粒径等对TPO/Mg(OH)2阻燃材料燃烧性能和力学性能的影响。OI测试结果表明,钛酸酯改性的粒径为2μm的Mg(OH)2使体系的OI达27.8%;改性Mg(OH)2用量为70份时成为难燃材料。垂直燃烧测试结果表明,100份改性Mg(OH)2使材料的燃烧等级达到FV-0级,无法引燃。力学性能测试结果表明,钛酸酯改性的粒径为2μm的Mg(OH)2使材料保持较高的应变;70份的Mg(OH)2使阻燃材料的拉伸屈服应力和拉伸断裂应力达到最大值。  相似文献   

20.
以氢氧化镁[Mg(OH)2]和微胶囊红磷(MRP)为阻燃剂制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)复合材料。通过极限氧指数、热失重分析和力学性能研究了硅酸盐纳米短纤维 (SNF) 以及马来酸酐接枝乙烯-醋酸乙烯共聚物(EVA-g-MAH)的加入对EVA阻燃性能和力学性能的影响,并通过扫描电子显微镜对其断面形貌和残炭表面形貌进行了观察和分析。结果表明,加入适量的EVA-g-MAH可以提高复合材料的极限氧指数和力学性能,加入12份的EVA-g-MAH后,材料的拉伸强度可达到10.2 MPa,断裂伸长率达到521 %,极限氧指数为39%,垂直燃烧达到V-0级别;加入适量的SNF后,可以显著提高复合材料的拉伸强度,当添加20份的SNF后,复合材料各性能最优,拉伸强度为12.3 MPa,断裂伸长率为210 %,极限氧指数为38%,垂直燃烧达到V-0级别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号