共查询到20条相似文献,搜索用时 0 毫秒
1.
A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion 总被引:1,自引:0,他引:1
Guanlong Deng Xingsheng Gu 《Computers & Operations Research》2012,39(9):2152-2160
This paper presents a hybrid discrete differential evolution (HDDE) algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion, which is not so well studied. The no-idle condition requires that each machine must process jobs without any interruption from the start of processing the first job to the completion of processing the last job. A novel speed-up method based on network representation is proposed to evaluate the whole insert neighborhood of a job permutation and employed in HDDE, and moreover, an insert neighborhood local search is modified effectively in HDDE to balance global exploration and local exploitation. Experimental results and a thorough statistical analysis show that HDDE is superior to the existing state-of-the-art algorithms by a significant margin. 相似文献
2.
A common assumption in the classical permutation flowshop scheduling model is that each job is processed on each machine at most once. However, this assumption does not hold for a re-entrant flowshop in which a job may be operated by one or more machines many times. Given that the re-entrant permutation flowshop scheduling problem to minimize the makespan is very complex, we adopt the CPLEX solver and develop a memetic algorithm (MA) to tackle the problem. We conduct computational experiments to test the effectiveness of the proposed algorithm and compare it with two existing heuristics. The results show that CPLEX can solve mid-size problem instances in a reasonable computing time, and the proposed MA is effective in treating the problem and outperforms the two existing heuristics. 相似文献
3.
Due to its simplicity yet powerful search ability, iterated local search (ILS) has been widely used to tackle a variety of single-objective combinatorial optimization problems. However, applying ILS to solve multi-objective combinatorial optimization problems is scanty. In this paper we design a multi-objective ILS (MOILS) to solve the multi-objective permutation flowshop scheduling problem with sequence-dependent setup times to minimize the makespan and total weighted tardiness of all jobs. In the MOILS, we design a Pareto-based variable depth search in the multi-objective local search phase. The search depth is dynamically adjusted during the search process of the MOILS to strike a balance between exploration and exploitation. We incorporate an external archive into the MOILS to store the non-dominated solutions and provide initial search points for the MOILS to escape from local optima traps. We compare the MOILS with several multi-objective evolutionary algorithms (MOEAs) shown to be effective for treating the multi-objective permutation flowshop scheduling problem in the literature. The computational results show that the proposed MOILS outperforms the MOEAs. 相似文献
4.
An ILS algorithm is proposed to solve the permutation flowshop sequencing problem with total flowtime criterion. The effects of different initial permutations and different perturbation strengths are studied. Comparisons are carried out with three constructive heuristics, three ant-colony algorithms and a particle swarm optimization algorithm. Experiments on benchmarks and a set of random instances show that the proposed algorithm is more effective. The presented ILS improves the best known permutations by a significant margin. 相似文献
5.
Francisco J. Rodriguez Manuel Lozano Christian Blum Carlos García-Martínez 《Computers & Operations Research》2013
In this work, we tackle the problem of scheduling a set of jobs on a set of unrelated parallel machines with minimising the total weighted completion times as performance criteria. The iterated greedy metaheuristic generates a sequence of solutions by iterating over a constructive heuristic using destruction and construction phases. In the last few years, iterated greedy has been employed to solve a considerable number of problems. This is because it is based on a very simple principle, it is easy to implement, and it often exhibits an excellent performance. Moreover, scalability for high-dimensional problems becomes an essential requirement for modern optimisation algorithms. This paper proposes an iterated greedy model for the above-mentioned scheduling problem to tackle large-size instances. The benefits of our proposal in comparison to existing metaheuristics proposed in the literature are experimentally shown. 相似文献
6.
流水车间调度问题属于NP难问题,并且和实际问题联系很紧。但是因为它的解空间太大,一般的算法很容易过早的陷入局部最优或者计算时间太长,提出了一种比较快速的混合遗传算法,能够在很短时间内计算出比较优的结果。详细介绍了这种算法的效果,并与两种常用来解决此类问题的算法进行了比较,总结出了这个算法的特点。 相似文献
7.
A discrete artificial bee colony algorithm for the total flowtime minimization in permutation flow shops 总被引:2,自引:0,他引:2
Obtaining an optimal solution for a permutation flowshop scheduling problem with the total flowtime criterion in a reasonable computational timeframe using traditional approaches and optimization tools has been a challenge. This paper presents a discrete artificial bee colony algorithm hybridized with a variant of iterated greedy algorithms to find the permutation that gives the smallest total flowtime. Iterated greedy algorithms are comprised of local search procedures based on insertion and swap neighborhood structures. In the same context, we also consider a discrete differential evolution algorithm from our previous work. The performance of the proposed algorithms is tested on the well-known benchmark suite of Taillard. The highly effective performance of the discrete artificial bee colony and hybrid differential evolution algorithms is compared against the best performing algorithms from the existing literature in terms of both solution quality and CPU times. Ultimately, 44 out of the 90 best known solutions provided very recently by the best performing estimation of distribution and genetic local search algorithms are further improved by the proposed algorithms with short-term searches. The solutions known to be the best to date are reported for the benchmark suite of Taillard with long-term searches, as well. 相似文献
8.
This paper develops a set of new simple constructive heuristic algorithms to minimize total flow-time for an -jobs×-machines permutation flowshop scheduling problem. We first propose a new iterative algorithm based on the best existing simple heuristic algorithm, and then integrate new indicator variables for weighting jobs into this algorithm. We also propose new decision criteria to select the best partial sequence in each iteration of our algorithm. A comprehensive numerical experiment reveals that our modifications and extensions improve the effectiveness of the best existing simple heuristic without affecting its computational efficiency. 相似文献
9.
This paper deals with a bi-objective flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which all jobs may not be processed by all machines. Furthermore, we consider transportation times between machines. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presents a new multi-objective electromagnetism algorithm (MOEM). The motivation behind this algorithm has risen from the attraction–repulsion mechanism of electromagnetic theories. Along with MOEA, we apply simulated annealing to solve the given problem. A set of experimental instances are carried out to evaluate the algorithm by advanced multi-objective performance measures. The related results show that a variant of our proposed MOEM provides sound performance comparing with other algorithms. 相似文献
10.
This paper considers a two-machine flowshop scheduling problem with a separated maintenance constraint. This means that the machine may not always be available during the scheduling period. It needs a constant time to maintain the machine after completing a fixed number of jobs at most. The objective is to find the optimal job combinations and the optimal job schedule such that the makespan is minimized. The proposed problem has some practical applications, for example, in electroplating process, the electrolytic cell needs to be cleaned and made up a deficiency of medicine. In this paper, we propose a heuristic algorithm to solve this problem. Some polynomially solvable cases and computational experiments are also provided. 相似文献
11.
Guanlong Deng 《International journal of systems science》2014,45(3):351-362
This article presents an enhanced iterated greedy (EIG) algorithm that searches both insert and swap neighbourhoods for the single-machine total weighted tardiness problem with sequence-dependent setup times. Novel elimination rules and speed-ups are proposed for the swap move to make the employment of swap neighbourhood worthwhile due to its reduced computational expense. Moreover, a perturbation operator is newly designed as a substitute for the existing destruction and construction procedures to prevent the search from being attracted to local optima. To validate the proposed algorithm, computational experiments are conducted on a benchmark set from the literature. The results show that the EIG outperforms the existing state-of-the-art algorithms for the considered problem. 相似文献
12.
In this paper we develop a Self-guided Genetic Algorithm (Self-guided GA), which belongs to the category of Estimation of Distribution Algorithms (EDAs). Most EDAs explicitly use the probabilistic model to sample new solutions without using traditional genetic operators. EDAs make good use of the global statistical information collected from previous searches but they do not efficiently use the location information about individual solutions. It is recently realized that global statistical information and location information should complement each other during the evolution process. In view of this, we design the Self-guided GA based on a novel strategy to combine these two kinds of information. The Self-guided GA does not sample new solutions from the probabilistic model. Instead, it estimates the quality of a candidate offspring based on the probabilistic model used in its crossover and mutation operations. In such a way, the mutation and crossover operations are able to generate fitter solutions, thus improving the performance of the algorithm. We tested the proposed algorithm by applying it to deal with the NP-complete flowshop scheduling problem to minimize the makespan. The experimental results show that the Self-guided GA is very promising. We also demonstrate that the Self-guided GA can be easily extended to treat other intractable combinatorial problems. 相似文献
13.
This paper is concerned with solving the single machine total weighted tardiness problem with sequence dependent setup times by a discrete differential evolution algorithm developed by the authors recently. Its performance is enhanced by employing different population initialization schemes based on some constructive heuristics such as the well-known NEH and the greedy randomized adaptive search procedure (GRASP) as well as some priority rules such as the earliest weighted due date (EWDD) and the apparent tardiness cost with setups (ATCS). Additional performance enhancement is further achieved by the inclusion of a referenced local search (RLS) in the algorithm together with the use of destruction and construction (DC) procedure when obtaining the mutant population. Furthermore, to facilitate the greedy job insertion into a partial solution which will be employed in the NEH, GRASP, DC heuristics as well as in the RLS local search, some newly designed speed-up methods are presented for the insertion move for the first time in the literature. They are novel contributions of this paper to the single machine tardiness related scheduling problems with sequence dependent setup times. To evaluate its performance, the discrete differential evolution algorithm is tested on a set of benchmark instances from the literature. Through the analyses of experimental results, its highly effective performance with substantial margins both in solution quality and CPU time is shown against the best performing algorithms from the literature, in particular, against the very recent newly designed particle swarm and ant colony optimization algorithms of Anghinolfi and Paolucci [A new discrete particle swarm optimization approach for the single machine total weighted tardiness scheduling problem with sequence dependent setup times. European Journal of Operational Research 2007; doi:10.1016/j.ejor.2007.10.044] and Anghinolfi and Paolucci [A new ant colony optimization approach for the single machine total weighted tardiness scheduling problem. http://www.discovery.dist.unige.it/papers/Anghinolfi_Paolucci_ACO.pdf, respectively. Ultimately, 51 out of 120 overall aggregated best known solutions so far in the literature are further improved while other 50 instances are solved equally. 相似文献
14.
Xianpeng WangLixin Tang 《Applied Soft Computing》2012,12(2):652-662
This paper proposes a discrete particle swarm optimization (DPSO) algorithm for the m-machine permutation flowshop scheduling problem with blocking to minimize the makespan, which has a strong industrial background, e.g., many production processes of chemicals and pharmaceuticals in chemical industry can be reduced to this problem. To prevent the DPSO from premature convergence, a self-adaptive diversity control strategy is adopted to diversify the population when necessary by adding a random perturbation to the velocity of each particle according to a probability controlled by the diversity of the current population. In addition, a stochastic variable neighborhood search is used as the local search to improve the search intensification. Computational results using benchmark problems show that the proposed DPSO algorithm outperforms previous algorithms proposed in the literature and that it can obtain 111 new best known upper bounds for the 120 benchmark problems. 相似文献
15.
This paper investigates the problem of allocating parallel application tasks to processors in heterogeneous distributed computing systems with the goal of maximizing the system reliability. The problem of finding an optimal task allocation for more than three processors is known to be NP-hard in the strong sense. To deal with this challenging problem, we propose a simple and effective iterative greedy algorithm to find the best possible solution within a reasonable amount of computation time. The algorithm first uses a constructive heuristic to obtain an initial assignment and iteratively improves it in a greedy way. We study the performance of the proposed algorithm over a wide range of parameters including problem size, the ratio of average communication time to average computation time, and task interaction density. The viability and effectiveness of our algorithm is demonstrated by comparing it with recently proposed task allocation algorithms for maximizing system reliability available in the literature. 相似文献
16.
The flowshop scheduling problem has been widely studied and many techniques have been applied to it, but few algorithms based on particle swarm optimization (PSO) have been proposed to solve it. In this paper, an improved PSO algorithm (IPSO) based on the “alldifferent” constraint is proposed to solve the flow shop scheduling problem with the objective of minimizing makespan. It combines the particle swarm optimization algorithm with genetic operators together effectively. When a particle is going to stagnate, the mutation operator is used to search its neighborhood. The proposed algorithm is tested on different scale benchmarks and compared with the recently proposed efficient algorithms. The results show that the proposed IPSO algorithm is more effective and better than the other compared algorithms. It can be used to solve large scale flow shop scheduling problem effectively. 相似文献
17.
In this paper, a discrete particle swarm optimization (DPSO) algorithm is presented to solve the no-wait flowshop scheduling problem with both makespan and total flowtime criteria. The main contribution of this study is due to the fact that particles are represented as discrete job permutations and a new position update method is developed based on the discrete domain. In addition, the DPSO algorithm is hybridized with the variable neighborhood descent (VND) algorithm to further improve the solution quality. Several speed-up methods are proposed for both the swap and insert neighborhood structures. The DPSO algorithm is applied to both 110 benchmark instances of Taillard [Benchmarks for basic scheduling problems. European Journal of Operational Research 1993;64:278–85] by treating them as the no-wait flowshop problem instances with the total flowtime criterion, and to 31 benchmark instances provided by Carlier [Ordonnancements a contraintes disjonctives. RAIRO Recherche operationelle 1978;12:333–51], Heller [Some numerical experiments for an M×J flow shop and its decision-theoretical aspects. Operations Research 1960;8:178–84], and Revees [A genetic algorithm for flowshop sequencing. Computers and Operations Research 1995;22:5–13] for the makespan criterion. For the makespan criterion, the solution quality is evaluated according to the reference makespans generated by Rajendran [A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational Research Society 1994;45:472–8] whereas for the total flowtime criterion, it is evaluated with the optimal solutions, lower bounds and best known solutions provided by Fink and Voß [Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 2003;151:400–14]. The computational results show that the DPSO algorithm generated either competitive or better results than those reported in the literature. Ultimately, 74 out of 80 best known solutions provided by Fink and Voß [Solving the continuous flow-shop scheduling problem by metaheuristics. European Journal of Operational Research 2003;151:400–14] were improved by the VND version of the DPSO algorithm. 相似文献
18.
改进并行蚁群算法求解置换流水线调度问题 总被引:2,自引:0,他引:2
为了解决置换流水线的调度问题,提出了改进的并行蚁群算法.针对置换流水线问题本身的特性,在蚂蚁系统算法(ACS)的基础上,设计出了新的启发式信息算法.在计算大数据量的情况下,通过设计的新规律对数据进行分组,并对分组进行并行计算,然后合并各组最优解来问题的最优解.实验结果表明,该改进方法行之有效,新的启发式信息提高了解的质量,而按数据规律的分组并行不仅缩小查找最优值时间,相比于随机分组的并行算法,更加提高了解的质量. 相似文献
19.
Dexuan Zou Haikuan LiuLiqun Gao Steven Li 《Engineering Applications of Artificial Intelligence》2011,24(4):616-624
An improved differential evolution algorithm (IDE) is proposed to solve task assignment problem. The IDE is an improved version of differential evolution algorithm (DE), and it modifies two important parameters of DE algorithm: scale factor and crossover rate. Specially, scale factor is adaptively adjusted According to the objective function values of all candidate solutions, and crossover rate is dynamically adjusted with the increasement of iterations. The adaptive scale factor and dynamical crossover rate are combined to increase the diversity of candidate solutions, and to enhance the exploration capacity of solution space of the proposed algorithm. In addition, a usual penalty function method is adopted to trade-off the objective and the constraints. Experimental results demonstrate that the optimal solutions obtained by the IDE algorithm are all better than those obtained by the other two DE algorithms on solving some task assignment problems. 相似文献
20.
本文主要基于现代启发式差分算法讨论多处理机调度,多处理机调度是NP组合优化问题,目前多采用启发算法。差分进化算法是最近提出的进化算法,主要根据父代个体之间矢量差构造下一代,是一种全局优化搜索方式。本文考虑采用差分进化矢量优先级模型描述调度顺序进行调度,与模拟退火算法比较得到较好调度结果。 相似文献