首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This paper introduces the family traveling salesperson problem (FTSP), a variant of the generalized traveling salesman problem. In the FTSP, a subset of nodes must be visited for each node cluster in the graph. The objective is to minimize the distance traveled. We describe an integer programming formulation for the FTSP and show that the commercial grade integer programming solver CPLEX 11 can only solve small instances of the problem in reasonable running time. We propose two randomized heuristics for finding optimal and near‐optimal solutions of this problem. These heuristics are a biased random‐key genetic algorithm and a GRASP with evolutionary path‐relinking. Computational results comparing both heuristics are presented in this study.  相似文献   

2.
Energy consumption is one of the most critical issues in wireless ad hoc and sensor networks. A considerable amount of energy is dissipated due to radio transmission power and interference (message collisions). A typical topology control technique aims at reducing energy consumption while ensuring specific desired properties to the established wireless network (such as biconnectivity). Energy minimization can be achieved by reducing the transmission power and selecting edges that suffer or cause less interference. We propose four integer programming formulations for the k‐connected minimum wireless ad hoc interference problem, which consists in a topology control technique to find a power assignment to the nodes of an ad hoc wireless network such that the resulting network topology is k‐vertex connected and the radio interference is minimum. Interference is measured by three different models: Boolean, protocol, and physical. We report computational experiments comparing the formulations and interference models. Optimal solutions for moderately sized networks are obtained using a commercial solver.  相似文献   

3.
单人负责多台机器的单一工序作业车间场景中,工人由于重复操作机器而产生学习效应.针对考虑依赖工件位置学习效应的单人单工序作业车间最小化最大完工时间的调度问题,建立一种混合整数规划模型.为解决该问题,设计一个考虑学习效应的贪婪算子,利用该算子构造两种贪婪算法,并提出一种基于贪婪的模拟退火算法.为衡量混合整数规划模型、贪婪算法和基于贪婪的模拟退火算法的性能,设计两种规模问题的数据实验.通过实验得出:现代混合整数规划模型求解器可以解决机器数量和工件总数量乘积小于75的小规模问题;基于贪婪的模拟退火算法求解此问题具有有效性,适用于各种规模的问题;间隔插入贪婪算法解决此问题速度较快,效果良好,可以应用于需要快速求解的场景.  相似文献   

4.
In this study, a two‐node‐connected star problem (2NCSP) is introduced. We are given a simple graph and internal and external costs for each link of the graph. The goal is to find the minimum‐cost spanning subgraph, where the core is two‐node‐connected and the remaining external nodes are connected to the core. First, we show that the 2NCSP belongs to the class of NP‐hard computational problems. Therefore, a greedy randomized adaptive search procedure (GRASP) heuristic is developed, enriched with a variable neighborhood descent (VND). The neighborhood structures include exact integer linear programming models to find the best paths and two‐node‐connected replacements, as well as a shaking operation in order to prevent being trapped in a local minima. The ring star problem (RSP) represents a relevant model in network optimization, where the core is a ring instead of an arbitrary two‐node‐connected graph. We contrast our GRASP/VND methodology with a previous reference work on the RSP in order to highlight the effectiveness of our heuristic. The heuristic is competitive, and the best results produced for several instances so far are under study. In this study, a discussion of the results and trends for future work are provided.  相似文献   

5.
This paper deals with the problem of distributed job shop scheduling in which the classical single-facility job shop is extended to the multi-facility one. The mathematical formulation of the problem is comprehensively discussed. Two different mixed integer linear programming models in form of sequence and position based variables are proposed. Using commercial software of CPLEX, the small sized problems are optimally solved. To solve large sized problems, besides adapting three well-known heuristics, three greedy heuristics are developed. The basic idea behind the developed heuristics is to iteratively insert operations (one at each iteration) into a sequence to build up a complete permutation of operations. The permutation scheme, although having several advantages, suffers from redundancy which is having many different permutations representing the same schedule. The issue is analyzed to recognize the redundant permutation. That improves efficiency of heuristics. Comprehensive experiments are conducted to evaluate the performance of the two models and the six heuristics. The results show sequence based model and greedy heuristics equipped with redundancy exclusion are effective for the problem.  相似文献   

6.
Wireless mesh networks (WMNs) provide cost effective solutions for setting up a communications network over a certain geographic area. In this paper, we study strategic problems of WMNs such as selecting the gateway nodes along with several operational problems such as routing, power control, and transmission slot assignment. Under the assumptions of the physical interference model and the tree-based routing restriction for traffic flow, a mixed integer linear programming (MILP) formulation is presented, in which the objective is to maximize the minimum service level provided at the nodes. A set of valid inequalities is derived and added to the model in an attempt to improve the solution quality. Since the MILP formulation becomes computationally infeasible for larger instances, we propose a heuristic method that is aimed at solving the problem in two stages. In the first stage, we devise a simple MILP problem that is concerned only with the selection of gateway nodes. In the second stage, the MILP problem in the original formulation is solved by fixing the gateway nodes from the first stage. Computational experiments are provided to evaluate the proposed models and the heuristic method.  相似文献   

7.
This paper considers a bi-level hazmat transportation network design problem in which hazmat shipments have to be transported over a road network between specified origin-destination points. The bi-level framework involves a regulatory authority and hazmat carriers. The control variables for the regulatory authority are locations of hazmat response teams and which additional links to include for hazmat travel. The regulatory authority (upper level) aims to minimize the maximum transport risk incurred by a transportation zone, which is related to risk equity. Our measure of risk incorporates the average response time to the hazmat incidents. Hazmat carriers (lower level) seek to minimize their travel cost. Using optimality conditions, we reformulate the non-linear bi-level model as a single-level mixed integer linear program, which is computationally tractable for medium size problems using a commercial solver. For large size problems, we propose a greedy heuristic approach, which we empirically demonstrate to find good solutions with reasonable computational effort. We also seek a robust solution to capture stochastic characteristics of the model. Experimental results are based on popular test networks from the Sioux Falls and Albany areas.  相似文献   

8.
9.
The multiple allocation hub-and-spoke network design under hub congestion problem is addressed in this paper. A non-linear mixed integer programming formulation is proposed, modeling the congestion as a convex cost function. A generalized Benders decomposition algorithm has been deployed and has successfully solved standard data set instances up to 81 nodes. The proposed algorithm has also outperformed a commercial leading edge non-linear integer programming package. The main contribution of this work is to establish a compromise between the transportation cost savings induced by the economies of scale exploitation and the costs associated with the congestion effects.  相似文献   

10.
This paper presents a hybrid algorithm that combines a metaheuristic and an exact method to solve the Probabilistic Maximal Covering Location–Allocation Problem. A linear programming formulation for the problem presents variables that can be partitioned into location and allocation decisions. This model is solved to optimality for small- and medium-size instances. To tackle larger instances, a flexible adaptive large neighborhood search heuristic was developed to obtain location solutions, whereas the allocation subproblems are solved to optimality. An improvement procedure based on an integer programming method is also applied. Extensive computational experiments on benchmark instances from the literature confirm the efficiency of the proposed method. The exact approach found new best solutions for 19 instances, proving the optimality for 18 of them. The hybrid method performed consistently, finding the best known solutions for 94.5% of the instances and 17 new best solutions (15 of them optimal) for a larger dataset in one-third of the time of a state-of-the-art solver.  相似文献   

11.
On a class of branching problems in broadcasting and distribution   总被引:1,自引:0,他引:1  
We introduce the following network optimization problem: given a directed graph with a cost function on the arcs, demands at the nodes, and a single source s, find the minimum cost connected subgraph from s such that its total demand is no less than lower bound D. We describe applications of this problem to disaster relief and media broadcasting, and show that it generalizes several well-known models including the knapsack problem, the partially ordered knapsack problem, the minimum branching problem, and certain scheduling problems. We prove that our problem is strongly NP-complete and give an integer programming formulation. We also provide five heuristic approaches, illustrate them with a numerical example, and provide a computational study on both small and large sized, randomly generated problems. The heuristics run efficiently on the tested problems and provide solutions that, on average, are fairly close to optimal.  相似文献   

12.
We investigate the optimization of transport routes of barge container ships with the objective to maximize the profit of a shipping company. This problem consists of determining the upstream and downstream calling sequence and the number of loaded and empty containers transported between any two ports. We present a mixed integer linear programming (MILP) formulation for this problem. The problem is tackled by the commercial CPLEX MIP solver and improved variants of the existing MIP heuristics: Local Branching, Variable Neighborhood Branching and Variable Neighborhood Decomposition Search. It appears that our implementation of Variable Neighborhood Branching outperforms CPLEX MIP solver both regarding the solution quality and the computational time. All other studied heuristics provide results competitive with CPLEX MIP solver within a significantly shorter amount of time. Moreover, we present a detailed case study transportation analysis which illustrates how the proposed approach can be used by managers of barge shipping companies to make appropriate decisions and solve real life problems.  相似文献   

13.
In this paper, we investigate the adaptation of the greedy randomized adaptive search procedure (GRASP) and variable neighborhood descent (VND) methodologies to the capacitated dispersion problem. Dispersion and diversity problems arise in the placement of undesirable facilities, workforce management, and social media, among others. Maximizing diversity deals with selecting a subset of elements from a given set in such a way that the distance among the selected elements is maximized. We target here a realistic variant with capacity constraints for which a heuristic with a performance guarantee was previously introduced. In particular, we propose a hybridization of GRASP and VND implementing within the strategic oscillation framework. To evaluate the performance of our heuristic, we perform extensive experimentation to first set key search parameters, and then compare the final method with the previous heuristic. Additionally, we propose a mathematical model to obtain optimal solutions for small‐sized instances, and compare our solutions with the well‐known LocalSolver software.  相似文献   

14.
Given a graph with its vertex set partitioned into a set of groups, nonnegative costs associated to its edges, and nonnegative prizes associated to its vertices, the prize‐collecting generalized minimum spanning tree problem consists in finding a subtree of this graph that spans exactly one vertex of each group and minimizes the sum of the costs of the edges of the tree less the prizes of the selected vertices. It is a generalization of the NP‐hard generalized minimum spanning tree optimization problem. We propose a GRASP (greedy randomized adaptive search procedure) heuristic for its approximate solution, incorporating path‐relinking for search intensification and a restart strategy for search diversification. The hybridization of the GRASP with path‐relinking and restarts heuristic with a data mining strategy that is applied along with the GRASP iterations, after the elite set is modified and becomes stable, contributes to making the heuristic more robust. The computational experiments show that the heuristic developed in this work found very good solutions for test problems with up to 439 vertices. All input data for the test instances and detailed numerical results are made available from Mendeley Data.  相似文献   

15.
This study proposes a new hybrid heuristic approach that combines the quantum particle swarm optimization (QPSO) technique with a local search phase to solve the binary generalized knapsack sharing problem (GKSP). The approach also incorporates a heuristic repair operator that uses problem-specific knowledge instead of the penalty function technique commonly used for constrained problems. This study is the first to report on the application of the QPSO method to the GKSP. The efficiency of our proposed approach was tested on a large set of instances, and the results were compared to those produced by the commercial mixed integer programming solver CPLEX 12.5 of IBM-ILOG. The Experimental results demonstrated the good performance of the QPSO in solving the GKSP.  相似文献   

16.
We propose a general-purpose heuristic approach combining metaheuristics and mixed integer programming to find high quality solutions to the challenging single- and parallel-machine capacitated lotsizing and scheduling problem with sequence-dependent setup times and costs. Commercial solvers fail to solve even medium-sized instances of this NP-hard problem; therefore, heuristics are required to find competitive solutions. We develop construction, improvement and search heuristics all based on MIP formulations. We then compare the performance of these heuristics with those of two metaheuristics and other MIP-based heuristics that have been proposed in the literature, and to a state-of-the-art commercial solver. A comprehensive set of computational experiments shows the effectiveness and efficiency of the main approach, a stochastic MIP-based local search heuristic, in solving medium to large size problems. Our solution procedures are quite flexible and may easily be adapted to cope with model extensions or to address different optimization problems that arise in practice.  相似文献   

17.
A scheduling problem with unrelated parallel machines, sequence and machine-dependent setup times, due dates and weighted jobs is considered in this work. A branch-and-bound algorithm (B&B) is developed and a solution provided by the metaheuristic GRASP is used as an upper bound. We also propose a set of instances for this type of problem. The results are compared to the solutions provided by two mixed integer programming models (MIP) with the solver CPLEX 9.0. We carry out computational experiments and the algorithm performs extremely well on instances with up to 30 jobs.  相似文献   

18.
The present paper studies the single machine, no-idle-time scheduling problem with a weighted quadratic earliness and tardiness objective. We investigate the relationship between this problem and the assignment problem, and we derive two lower bounds and several heuristic procedures based on this relationship. Furthermore, the applicability of the time-indexed integer programming formulation is investigated. The results of a computational experiment on a set of randomly generated instances show (1) the high-quality results of the proposed heuristics, (2) the low optimality gap of one of the proposed lower bounds and (3) the applicability of the integer programming formulation to small and medium size cases of the problem.  相似文献   

19.
This paper proposes a genetic algorithm (GA) based heuristic to the multi-period fixed charge distribution problem associated with backorder and inventories. The objective is to determine the size of the shipments, backorder and inventories at each period, so that, the total cost incurred during the entire period towards transportation, backorder and inventories is minimum. The model is formulated as pure integer nonlinear programming and 0-1 mixed integer linear programming problems, and proposes a GA based heuristic to provide solution to the above problem. The proposed GA based heuristic is evaluated by comparing their solutions with lower bound, LINGO solver and approximate solutions. The comparisons reveal that the GA generates better solutions than the approximate solutions, and is capable of providing solutions equal to LINGO solutions and closer to the lower bound value of the problems.  相似文献   

20.
We consider here the lot sizing and scheduling problem in single-level manufacturing systems. The shop floor is composed of unrelated parallel machines with sequence dependent setup times. We propose an integer programming model embedding precise capacity information due to scheduling constraints in a classical lot-sizing model. We also propose an iterative approach to generate a production plan taking into account scheduling constraints due to changeover setup times. The procedure executes two decision modules per iteration: a lot-sizing module and a scheduling module. The capacitated lot-sizing problem is solved to optimality considering estimated data and aggregate information, and the scheduling problem is solved by a GRASP heuristic. In the proposed scheme the information flow connecting the two levels is managed in each iteration. We report a set of computational experiments and discuss future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号