首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Ti- and Zr-containing mesoporous SBA-15 supports and their respective NiMo catalysts were prepared to study the effect of the Ti and Zr loading into the support on the characteristics of Ni and Mo surface species and their catalytic activity in the 4,6-dimethyldibenzothiophene hydrodesulfurization (HDS). Ti and Zr-containing SBA-15 solids with different metal loading (up to 19 wt.% of TiO2 or 22 wt.% of ZrO2) were prepared by chemical grafting. The solids prepared were characterized by N2 physisorption, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), temperature-programmed reduction (TPR), chemical analysis and HRTEM. The results show that Ti- and Zr-SBA-15 supports with highly dispersed Ti and Zr species can be obtained without substantial loss of SBA-15 characteristics. Zr grafted species showed somewhat better dispersion on the SBA-15 surface than the corresponding Ti counterparts. It was found that TiO2 and, especially, ZrO2 incorporation in the SBA-15 support leads to stronger interaction of Mo and Ni species with the support providing better dispersion to the oxidic and sulfided metal species (XRD, TPR, HRTEM). NiMo catalysts supported on Ti- and Zr-containing SBA-15 showed high activity in 4,6-dimethyldibenzothiophene HDS. It can be concluded therefore that SBA-15 materials grafted with Ti or Zr species show promising features as supports for Mo-based hydrotreating catalysts.  相似文献   

2.
In the present work, with the aim of searching for new, highly effective catalysts for deep HDS, a series of NiMo catalysts with different MoO3 loadings (6–30 wt.%) was prepared using SBA-15 material covered with ZrO2-monolayer as a support. Prepared catalysts were characterized by N2 physisorption, small- and wide-angle XRD, UV–vis diffuse reflectance spectroscopy, temperature-programmed reduction, SEM-EDX and HRTEM, and their catalytic activity was evaluated in the 4,6-dimethyldibenzothiophene hydrodesulfurization (HDS). It was observed that ZrO2 incorporation on the SBA-15 surface improves the dispersion of the Ni-promoted oxidic and sulfided Mo species, which were found to be highly dispersed, up to 18 wt.% of MoO3 loading. Further increase in metal charge resulted in the formation of MoO3 crystalline phase and an increase in the stacking degree of the MoS2 particles. All NiMo catalysts supported on ZrO2-modified SBA-15 material showed high activity in HDS of 4,6-DMDBT. The best catalyst having 18 wt.% MoO3 and 4.5 wt.% NiO was almost twice more active than the reference NiMo/γ-Al2O3 catalyst. High activity of NiMo/Zr-SBA-15 catalysts and its evolution with metal loading was related to the morphological characteristics of the MoS2 active phase determined by HRTEM.  相似文献   

3.
CoMo/Ti-SBA-15 catalysts for dibenzothiophene desulfurization   总被引:1,自引:0,他引:1  
With a view to reducing the sulfur content in diesel fuels, novel desulfurization CoMo catalysts were supported on a Ti-loaded hexagonal mesoporous SBA-15 material. The Ti-SBA-15 substrates were synthesized using triblock copolymers as structure-directing agents. Catalytic activity was assessed in the model reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT), carried out in a batch reactor at T = 623 K and with a total hydrogen pressure of 3.1 MPa. The reaction proceeds via the direct desulfurization route (main route) and the hydrogenation (HYD) pathway. The incorporation of Ti into the SBA-15 afforded catalysts that were more active than the Ti-free counterpart, due to the enhancement of the DDS route in this reaction. This difference was explained in terms of a larger number of coordinately unsaturated sites (CUS) of the metal sulfide on Ti-loaded catalysts. Under steady-state conditions, the CoMoST20 catalyst with a Si/Ti ratio of 20 was the most active among the catalysts studied. Since this catalyst exhibited both Ti4+ ions incorporated into the SBA-15 framework and separate anatase TiO2 clusters located on its surface, the activity enhancement on this sample was explained by the larger intrinsic activity of the “Co–Mo–S” phase located on these TiO2 nanoparticles. The Ti-SBA-15 supports and the CoMo/Ti-SBA-15 catalysts were studied by N2 adsorption–desorption isotherms, XRD, TEM, FTIR of adsorbed pyridine and NO, UV–vis DRS, TPR, micro-Raman and XPS spectroscopy.  相似文献   

4.
A series of Mo2C/SBA-15 catalysts with different Mo contents were prepared by temperature-programmed carburization (TPC). The materials obtained and their oxide precursors (MoO3/SBA-15) were characterized by Nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. The activities of the catalysts for deep hydrodesulfurization (HDS) of thiophene were evaluated. The results of N2 adsorption-desorption isotherms indicated that the surface area and pore diameter of the oxide precursors increase after carburization. The XRD patterns show that Mo2C particles are highly dispersed in the SBA-15 ordered mesoporous. The test results show that Mo2C/SBA-15 catalysts have an excellent performance for the deep HDS under the lower temperature region.  相似文献   

5.
A series of B-Ni2P/SBA-15/cord monolithic catalysts were prepared by coating the slurry of the B-Ni2P/SBA-15 precursors on a pretreated cordierite support, and followed by temperature-programmed reduct...  相似文献   

6.
The siliceous and the metal substituted (B or Al)-SBA-15 molecular sieves were used as a support for NiMo hydrotreating catalysts (12 wt.% Mo and 2.4 wt.% Ni). The supports were characterized by X-ray diffraction (XRD), scanning electron microscopy and N2 adsorption–desorption isotherms. The SBA-15 supported NiMo catalysts in oxide state were characterized by BET surface area analysis and XRD. The sulfided NiMo/SBA-15 catalysts were examined by DRIFT of CO adsorption and TPD of NH3. The HDN and HDS activities with bitumen derived light gas oil at industrial conditions showed that Al substituted SBA-15 (Al-SBA-15) is the best among the supports studied for NiMo catalyst. A series of NiMo catalysts containing 7–22 wt.% Mo with Ni/Mo weight ratio of 0.2 was prepared using Al-SBA-15 support and characterized by BET surface area analysis, XRD and temperature programmed reduction and DRIFT spectroscopy of adsorbed CO. The DRIFT spectra of adsorbed CO showed the presence of both unpromoted and Ni promoted MoS2 sites in all the catalysts, and maximum “NiMoS” sites concentration with 17 wt.% of Mo loading. The HDN and HDS activities of NiMo/Al-SBA-15 catalysts were studied using light gas oil at temperature, pressure and WHSV of 370 °C, 1300 psig and 4.5 h−1, respectively. The NiMo/Al-SBA-15 catalyst with 17 wt.% Mo and 3.4 wt.% of Ni is found to be the best catalyst. The HDN and HDS activities of this catalyst are comparable with the conventional Al2O3 supported NiMo catalyst in real feed at industrial conditions.  相似文献   

7.
Defined hexagonal cylindrical pore structure SBA-15 material was synthesized as support for hydrotreating catalysts. The stability of the mesoporous material under acid and basic environments commonly used to prepare hydrotreating catalysts was investigated. The effects of the acid and basic treatments on the stability of SBA-15 and NiMo/SBA-15 catalysts were evidenced by different characterization techniques such as N2 adsorption–desorption, X-ray diffraction (XRD), Raman Spectroscopy and high resolution transmission electron microscopy (HRTEM). Supported NiMo/SBA-15 catalysts prepared by pore volume co-impregnation in acidic, neutral and basic solutions of the Ni and Mo precursor salts were characterized to evaluate the textural and structural changes caused by the method of preparation. Characterization of the support after accelerated stability tests indicates large deterioration of the SBA-15 structural order at basic pH. The characterization results of oxide and sulfided catalysts indicate, for the catalysts prepared at high pH, an increasing presence of β–NiMoO4 phase in the oxide catalysts, and a relatively lower population of MoS2 in the sulfided catalysts. The activity of the different catalysts evaluated in the thiophene hydrodesulfurization reaction was higher for the catalysts prepared at low pH.  相似文献   

8.
SBA-15 supported Mo, CoMo, NiMo catalysts were prepared. The supports were characterized by surface area, pore size distribution, and X-ray diffraction. The finished catalysts in oxide state were characterized by surface area analysis and X-ray diffraction in the region where the molybdenum oxide lines are seen. The sulfided catalysts were examined by oxygen chemisorption at low temperatures. The catalytic functionalities of these catalysts viz hydrodesulfurization (HDS) and hydrogenation were evaluated on sulfided catalysts. The catalytic activities of these catalysts are compared with γ-Al2O3- and SiO2-supported catalysts. An attempt is made to understand the relationship between oxygen chemisorption and catalytic activities with the help of other characterization results.  相似文献   

9.
Co-Mo/SBA-15柴油加氢脱硫研究   总被引:3,自引:0,他引:3  
以介孔分子筛SBA-15为载体,担载Co—Mo双金属活性组分制备了深度加氢脱硫催化剂。通过XRD和BET表征表明,负载金属后SBA-15分子筛仍然保持二维晶相结构,表面积略有下降。以直馏柴油为原料,在固定床反应器上评价了催化剂的脱硫反应活性的结果表明,SBA-15介孔分子筛Co—Mo的负载量为W(CoO)=5%,w(MoO3)=25%;脱硫适宜的反应条件为:反应温度360℃,压力4.0MPa,氢油体积比400.0,空速2.0h^-1。在此条件下,柴油硫含量可由1350μg/g降至39μg/g。  相似文献   

10.
Alumina-silica binary mixed oxide support is used to prepare catalysts for hydrotreating of Maya heavy crude. Support is prepared by urea hydrolysis. Sequential incipient wetness and co-impregnation techniques are employed for preparation of catalysts. Ammonium heptamolybdenum is used as precursor of MoO3. Catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR) and the pore size distribution. Hydrodemetallation (HDM), hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and asphaltene conversion (HDAsp) reactions are studied on these catalysts. One reference catalyst is also taken for comparison. Coke and metals depositions on spent catalysts are measured. The catalyst deactivation rate is also studied. The X-ray diffraction (XRD) results reveal that molybdenum atoms are well dispersed into CoMo catalyst, whereas MoO3 crystalline phases are found in PCoMo and PNiMo catalysts. TPR reduction profiles are different for different catalysts. The laboratory made catalyst is reduced at one temperature, whereas the reference catalyst shows two reduction profiles. The reference catalyst shows the highest activities among four catalysts. The highest HDM and HDAsp activities of the reference catalyst may be due to its bigger pore diameter. The presence of TiO2 in the reference catalyst enhances HDS and HDN activities. The CoMo catalyst shows higher activities than those of PCoMo and PNiMo catalysts. The presence of crystalline MoO3 causes for lower activities of catalysts PCoMo and PNiMo.  相似文献   

11.
The structural properties and the hydrodesulfurization (HDS) activity of sodium doped and sodium free CoMo catalysts supported on amorphous aluminosilicates (ASA) were investigated as a function of different SiO2:Al2O3 ratios. The support yielding the most active catalyst, (66% alumina) doped with different amounts of sodium, was used for a series of similar catalysts in order to study the effect of the alkali ion on the catalytic performance. The supports were prepared by sol–gel method and the catalysts were prepared by incipient wet impregnation method. The structure and the surface of the various samples were investigated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic behaviour was tested in the hydrodesulfurization of thiophene carried out in a continuous flow system at atmospheric pressure, in a range of temperature between 603 and 633 K. Changes of activity with the support composition were observed. The presence of sodium, modifying the Brønsted acidity of the supports, enhances such effect. Moreover, the increase of the activity with increasing amount of sodium was a clear indication of the promoting effect of the alkali ion.  相似文献   

12.
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.  相似文献   

13.
Molybdenum sulfide and cobalt-molybdenum sulfide catalysts supported on mesoporous SBA-15 were prepared by thermal decomposition of ammonium thiomolybdate (ATM). SBA-15 was synthesized at 353 K and 413 K to obtain pore diameters of about 6 and 9 nm, respectively. The (Co)-MoS2/SBA-15 catalysts were characterized with X-ray diffraction (XRD), N2-physisorption and high-resolution transmission electron microscopy (HRTEM). HRTEM images give evidence for the presence of a poorly dispersed MoS2 phase with long MoS2 slabs and a pronounced MoS2 stacking. The catalytic performance in the hydrodesulfurization (HDS) reaction of dibenzothiophene (DBT) was examined at T = 623 K and P = 3.4 MPa. The Co-MoS2/SBA-15 materials show a relatively high catalytic activity with a strong preference for the direct desulfurization (DDS) pathway. This is an interesting result in view of the significant stacking of MoS2 particles and the size of the slabs. The generation of the catalytically active CoMoS phase and a large number of coordinately unsaturated sites (CUS) may explain the high performance of Co promoted MoS2/SBA-15 catalysts in the HDS reaction. A confinement effect of the mesoporous channels of SBA-15 is observed for the unpromoted MoS2/SBA-15 catalysts. SBA-15 with 9 nm channel diameter with 11 wt.% Mo loading shows a higher selectivity for the hydrogenation pathway than SBA-15 with 6 nm channel and 16 wt.% Mo loading.  相似文献   

14.
Carolina Leyva  Mohan S. Rana 《Fuel》2007,86(9):1232-1239
CoMo and NiMo supported Al2O3 catalysts have been investigated for hydrotreating of model molecule as well as industrial feedstock. Activity studies were carried out for thiophene and SRGO hydrodesulfurization (HDS) in an atmospheric pressure and batch reactor respectively. These activities on sulfided catalysts were evaluated as a function of promoter content [M/(M + Mo) = 0.30, 0.34, 0.39; M = Co or Ni] using fixed (ca. 8 wt.%) molybdenum content. The promoted catalysts were characterized by textural properties, XRD, and temperature programmed reduction (TPR). TPR spectra of the Co and Ni promoter catalysts showed that Ni promotes the easy reduction of Mo species compared with Co. With the variation of promoter content NiMo catalyst was found to be superior to CoMo catalyst for gas oil HDS, while at low-promoter content the opposite trend was observed for HDS of thiophene. The behavior was attributed to the several reaction mechanisms involved for gas oil HDS. A nice relationship was obtained for hydrodesulfurized gas oil refractive index (RI) and aromatic content, which corresponds to the Ni hydrogenation property.  相似文献   

15.
A series of unsupported dimolybdenum nitride (γ-Mo2N) catalysts differing in surface area were prepared by temperature programmed reduction of MoO3 with a mixture of NH3:N2 (90:10). Characterization of catalysts by BET, XRD, TPR and XPS techniques was carried out. The samples were used as catalysts in hydrotreating reactions (simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene). Low surface area γ-Mo2N materials show much higher specific conversions than those with higher surface area. These results indicate that HDS and HYD reactions over γ-Mo2N seem to be structure-sensitive. The relative exposure extent of crystalline planes (1 1 1) and (2 0 0) over the different catalysts can be associated with their hydrogen adsorption capacities and with their catalytic performances. The catalytic activities are significantly affected by the catalyst pretreatment conditions.  相似文献   

16.
After the test run of several months two kinds of commercial catalysts (NiMo/Al2O3 and CoMo/Al2O3) were examined in hydrodesulfurization (HDS) of straight run (SRGO) and nitrogen-removed gas oils, at 340 °C under 50 kg/cm2 H2. Hydrogen renewal between stages was attempted to show additional inhibition effects of the by-products such as H2S and NH3. Spent NiMo/Al2O3 and CoMo/Al2O3 catalysts showed contrasting activities in HDS and susceptibility to nitrogen species, according to their catalytic natures, compared to those of their virgin ones. HDS over spent NiMo/Al2O3 was significantly improved by removal of nitrogen species, while that over spent CoMo/Al2O3 was much improved by H2 refreshment. The activity for refractory sulfur species such as 4,6-dimethyldibenzothiophene was reduced more severely than that for the reactive sulfur species such as benzothiophenes over spent catalysts. The effects of both two-stage hydrodesulfurization and nitrogen-removal were markedly reduced over the spent NiMo when compared with those over virgin NiMo one. The acidity of the catalysts was correlated with the inhibition susceptibility by nitrogen species as well as H2S and NH3. Spent catalysts apparently lost their activity due to the carbon deposition, which covered the active sites more preferentially. The spent NiMo catalyst carried more deposited carbon with larger C/H ratio and nitrogen content. Higher acidity was found to be present on the NiMo catalyst, but this was greatly decreased by the carbon deposition. Additionally, the reactivity of nitrogen species in HDS was briefly discussed in relation to the acidity of the catalyst and its deactivation by carbon deposition.  相似文献   

17.
The potential of mesoporous silica–alumina (MSA) material as support for the preparation of sulfided Pt and Pt–Mo catalysts of varying Pt loadings was studied. The catalysts were characterized by their texture, hydrogen adsorption, transmission electron microscopy, temperature programmed reduction (TPR) and by activity in simultaneous hydrodesulfurization (HDS) of thiophene and hydrodenitrogenation (HDN) of pyridine. Sulfided Pt/MSA catalysts with 1.3 and 2 wt.% Pt showed almost the same HDS and higher HDN activities per weight amounts as conventional CoMo and NiMo/Al2O3, respectively. The addition of Pt to sulfided Mo/MSA led to promotion in HDS and HDN with an optimal promoter content close to 0.5 wt.%. The results of TPR showed strong positive effect of Pt on reducibility of the MoS2 phase which obviously reflects in higher activity of the promoted catalysts. The activity of the MSA-supported Pt–Mo catalyst containing 0.5 wt.% Pt was significantly higher than the activity of alumina-supported Pt–Mo catalyst. Generally, Pt–Mo/MSA catalysts promoted by 0.3–2.3 wt.% Pt showed lower HDS and much higher HDN activities as compared to weight amounts of CoMo and NiMo/Al2O3. It is proposed that thiophene HDS and pyridine hydrogenation proceed over Pt/MSA and the majority of Pt–Mo/MSA catalysts on the same type of catalytic sites, which are associated with sulfided Pt and MoS2 phases. On the contrary, piperidine hydrogenolysis takes place on different sites, most likely on metallic Pt fraction or sites created by abstraction of sulfur from MoS2 in the presence of Pt.  相似文献   

18.
Among various Cu/ZnO/ZrO2 catalysts with the Cu/Zn ratio of 3/7, the one with 15 wt.% of ZrO2 obtains the best activity for methanol synthesis by hydrogenation of CO. The TPR, TPO and XPS analyses reveal that a new copper oxide phase is formed in the calcined Cu/ZnO/ZrO2 catalysts by the dissolution of zirconium ions in copper oxide. In addition, the Cu/ZnO/ZrO2 catalyst with 15 wt.% of ZrO2 turns out to contain the largest amount of the new copper oxide phase. When the Cu/ZnO/ZrO2 catalysts is reduced, the Cu2+ species present in the ZrO2 lattice is transformed to Cu+ species. This leads to the speculation that the addition of ZrO2 to Cu/ZnO catalysts gives rise to the formation of Cu+ species, which is related to the methanol synthesis activity of Cu/ZnO/ZrO2 catalyst in addition to Cu metal particles. Consequently, the ratio of Cu+/Cu0 is an important factor for the specific activity of Cu/ZnO/ZrO2 catalyst for methanol synthesis.  相似文献   

19.
The effect of the TiO2–Al2O3 mixed oxide support composition on the hydrodesulfurization (HDS) of gasoil and the simultaneous HDS and hydrodenitrogenation (HDN) of gasoil+pyridine was studied over two series of CoMo and NiMo catalysts. The intrinsic activities for gasoil HDS and pyridine HDN were significantly increased by increasing the amount of TiO2 into the support, and particularly over rich- and pure-TiO2-based catalysts. It is suggested that the increase in activity be due to an improvement in reducing and sulfiding of molybdena over TiO2. The inhibiting effect of pyridine on gasoil HDS was found to be similar for all the catalysts, i.e., was independent of the support composition. The ranking of the catalysts for the gasoil HDS test differed from that obtained for the thiophene test at different hydrogen pressures. In the case of gasoil HDS, the activity increases with TiO2 content and large differences are observed between the catalysts supported on pure Al2O3 and pure TiO2. In contrast, in the case of the thiophene test, the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also, in the thiophene test the difference in intrinsic activity between the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also in the thiophene test, the difference in intrinsic activity between the pure Al2O3- and pure TiO2-based catalysts is relatively small and dependent on the H2 pressure used. Such differences in activity trend among the gasoil and the thiophene tests are due to a different sensitivity of the catalysts (by different support or promoter) to the experimental conditions used. The results of the effect of the H2 partial pressure on the thiophene HDS, and on the effect of H2S concentration on gasoil HDS demonstrate the importance of these parameters, in addition to the nature of the reactant, to perform an adequate catalyst ranking.  相似文献   

20.
以介孔分子筛SBA-15为载体,制备一系列不同La含量的La-Ni2P/SBA-15催化剂前驱体,将La-Ni2P/SBA-15前驱体涂覆在预处理的整体式载体堇青石上,在H2气氛程序升温还原,制备不同La含量的La-Ni2P/SBA-15/堇青石整体式催化剂。对合成的催化剂进行X射线衍射和N2吸附-脱附结构表征,并评价对二苯并噻吩的加氢脱硫活性。结果表明,Ni2P存在于所有的La-Ni2P/SBA-15/堇青石整体式催化剂中,且随着La含量的增加,La-Ni2P/SBA-15/堇青石整体式催化剂的比表面积和孔体积均有一定程度的提高,催化活性也提高。对于Ni2P/SBA-15/堇青石整体式催化剂,在300 ℃和380 ℃时,二苯并噻吩加氢脱硫转化率仅为27.2%和91.3%;而1.5%La-Ni2P/SBA-15/堇青石催化剂在300 ℃和380 ℃时,二苯并噻吩转化率分别为36.8%和96.3%,显示出较好的二苯并噻吩加氢脱硫活性。La-Ni2P/SBA-15/堇青石整体式催化剂在对二苯并噻吩的加氢脱硫过程中,以直接脱硫和加氢脱硫两种脱硫方式同时进行,并且以直接脱硫为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号