首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tentative phase relations in the binary system BnOa-A12O3 are presented as a prerequisite to the understanding of the system Li2O-B2O3-Al2O3. Two binary compounds, 2A12O3.B2O3 and 9A12O3.-2B2O3, melted incongruently at 1030° f 7°C and about 144°C, respectively. Two ternary compounds were isolated, 2Li2O.A12O3.B2O3 and 2Li2O. 2AI2O3. 3B203. The 2:1:1 compound gave a melting reaction by differential thermal analysis at 870°± 20° C, but the exact nature of the melting behavior was not determined. The 2:2:-3 compound melted at 790°± 20° C to LizO.-5Al2O3 and liquid. X-ray diffraction data for the compounds are presented and compatibility triangles are shown.  相似文献   

2.
Compatible phases in the system Li2O-Al2O3-TiO2 at various temperature levels were determined mainly by solid-state reactions for the portion of the ternary system bounded by Li2O Al2O2, Li2O.TiO2, Al2O, and TiO2. The existence of a ternary compound, Li2O.Al2O3.4TiO2, and nine joins was established. The ternary compound has a lower limit of stability at 1090°± 15°C. and dissociates and recombines rapidly at 1380°± 15°C.  相似文献   

3.
A tentative phase diagram for the system Al203-Nd2O3 is presented. Three compounds were obtained: a β -A12O3-type compound, the perovskite NdAlO3, and Nd4Al2O9. The perovskite melts congruently (mp 2090°C), and the two other compounds exhibit incongruent melting behavior: β -Nd/Al2O3, mp 1900°C; Nd4Al2O9, mp 1905°C. Two eutectics exist with the following compositions and melting points: 80 mol% Al2O3, 1750°C; 23 mol% Al2O3,1800°C. Nd4Al2O9 decomposes in the solid state at 1780°C.  相似文献   

4.
Phase relations in the system Na2O· Al2O3-CaO· Al2O3-Al2O3 at 1200°C in air were determined using the quenching method and high-temperature X-ray diffraction. The compound 2Na2O · 3CaO · 5Al2O3, known from the literature, was reformulated as Na2O · CaO · 2Al2O3. A new compound with the probable composition Na2O · 3CaO · 8Al2O3 was found. Cell parameters of both compounds were determined. The compound Na2O · CaO-2Al2O3 is tetragonal with a = 1.04348(24) and c = 0.72539(31) nm; it forms solid solutions with Na2O · Al2O3 up to 38 mol% Na2O at 1200°C. The compound Na2O · 3CaO · 8Al2O3 is hexagonal with) a = 0.98436(4) and c = 0.69415(4) nm. The compound CaO · 6Al2O3 is not initially formed from oxide components at 1200°C but behaves as an equilibrium phase when it is formed separately at higher temperatures. The very slow transformation kinetics between β and β "-Al2O3 make it very difficult to determine equilibrium phase relations in the high-Al2O3 part of the diagram. Conclusions as to lifetime processes in high-pressure sodium discharge lamps can be drawn from the phase diagram.  相似文献   

5.
Nine compositions containing 40 to 68% B2O3 were used to study the high-lithia portion of the system Li2O-B2O3 by quenching and differential thermal analysis methods. The compounds 3Li2O 2B2O3 and 3Li2O B2O3 melted incongruently at 700°± 6°C, and 715°± 15°C., respectively. The compound 2Li2O B2O3 is assumed to dissociate slightly below 650°± 15° C., although the data could also be interpreted as in-congruent melting. Below 600°± 6°C. it does dissociate to the 3:2 and 3:1 compounds. In this narrow temperature interval the 2:1 compound had an inversion at 618°± 6°C. Both forms of the 2:1 compound could be quenched to room temperature. X-ray diffraction data for the compounds are tabulated, and the complete phase diagram for the system Li2O-B2O3 is presented.  相似文献   

6.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

7.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

8.
Liquidus equilibrium relations for the air isobaric section of the system Y2O3–Fe2O3–FeO–Al2O3 are presented. A Complete solid-solution series is found between yttrium iron garnet and yttrium aluminum garnet as well as extensive solid solutions in the spinel, hematite, orthoferrite, and corundum phases. Minimum melting temperatures are raised progressively with the addition of alumina from 1469°C in the system Y–Fe–O to a quaternary isobaric peritectic at 1547°C and composition Y 0.22 Fe 1.08 Al 0.70 O 2.83* Liquidus temperatures increase rapidly with alumina substitutions beyond this point. The thermal stability of the garnet phase is increased with alumina substitution to the extent that above composition Y 0.75 Fe 0.65 Al 0.60 O 3 garnet melts directly to oxide liquid without the intrusion of the orthoferrite phase. Garnet solid solutions between Y 0.75 Fe 1.25 O 3 and Y 0.75 Fe 0.32- Al 0.93 O 3 can be crystallized from oxide liquids at minimum temperatures ranging from 1469° to 1547°C, respectively. During equilibrium crystallization of the garnet phase, large changes in composition occur through reaction with the liquid. Unless care is taken to minimize temperature fluctuations and unless growth proceeds very slowly, the crystals may show extensive compositional variation from core to exterior.  相似文献   

9.
Microcellular biomorphous Al2O3 was produced by Al-vapor infiltration in pyrolyzed rattan and pine wood-derived biocarbon preforms. At 1600°C the biocarbon preforms reacted with gaseous aluminum to form Al4C3. After oxidation in air at temperatures between 1550° and 1650°C, for 3 h, the biocarbon preforms were fully converted into α-Al2O3. Owing to the high anisotropy of biomorphous Al2O3, the compressive strength behavior was strongly dependent on the loading direction. The compressive strength of the specimens (0.1–11 MPa) is strongly dependent on their overall porosity and their behavior could be explained using the Gibson–Ashby model. The Darcian permeability ( k 1), as well as the non-Darcian permeability ( k 2), increased with an increase of the total porosity. The Darcian permeability of biomorphous Al2O3 was found to be in the range of 1–8 × 10−9 m2, which is in the order of magnitude of gas filters, and, therefore, suitable for several technological applications.  相似文献   

10.
The internal friction of R2O·Al2O3·6SiO2 glasses was measured from-180° to 700°C at 0.4 Hz. Glasses containing Li2O or Na2O exhibited only the one internal friction peak characteristic of the stress-induced movement of the alkali ions. Substitution of a second alkali resulted in two significant changes in the internal friction: (1) a rapid reduction in the magnitude of the original alkali peak and (2) the appearance of a new internal friction peak whose magnitude was especially sensitive to the concentration of the second alkali. Each combination of two alkali ions resulted in a new peak, with peaks being observed for the combinations Li-Na, Na-K, and Li-K. A mechanical damping spectrum is predicted for aluminosilicate glasses containing more than two alkali ions.  相似文献   

11.
A type of new low sintering temperature ceramic, Li2TiO3 ceramic, has been found. Although it is difficult for the Li2TiO3 compound to be sintered compactly at temperatures above 1000°C for the volatilization of Li2O, dense Li2TiO3 ceramics were obtained by conventional solid-state reaction method at the sintering temperature of 900°C with the addition of ZnO–B2O3 frit. The sintering behavior and microwave dielectric properties of Li2TiO3 ceramics with less ZnO–B2O3 frit (≤3.0 wt%) doping were investigated. The addition of ZnO–B2O3 frit can lower the sintering temperature of the Li2TiO3 ceramics, but it does not apparently degrade the microwave dielectric properties of the Li2TiO3 ceramics. Typically, the good microwave dielectric properties of ɛr=23.06, Q × f =32 275 GHz, τf = 35.79 ppm/°C were obtained for 2.5 wt% ZnO–B2O3 frit-doped Li2TiO3 ceramics sintered at 900°C for 2 h. The porosity was 0.08%. The Li2TiO3 ceramic system may be a promising candidate for low-temperature cofired ceramics applications.  相似文献   

12.
The saturation surface of cassiterite, SnO2, was determined for liquids in the system K2O–Al2O3–SiO2 as a function of bulk composition and temperature. At fixed K2O/Al2O3 cassiterite solubility varies weakly with SiO2 concentration (76 to 84 mol%), temperature (1350° to 1550°C), and log ( f O2) (−0.7 to −5.3). Cassiterite solubility is also approximately independent of composition in liquids with molar ratios of K2O/Al2O3 lessthan equal to 1 (peraluminous liquids). As K2O/Al2O3 increases from 1 (peralkaline liquids), however, cassiterite solubility increases steeply and approximately linearly with K2O in excess of Al2O3. It is proposed that potassium in excess of aluminum combines with Sn4+ to form quasi-molecular complexes with an effective stoichiometry of K4SnO4.  相似文献   

13.
Polycrystalline Al2O3 was chemically vapor-deposited onto sintered Al2O3 substrates by reaction of AlCl3 with (1) H2O, (2) CO:H2, and (3) O2 at 1000° and 1500°C and 0.5 and 5.0 torr. Although the thermodynamics of all these reactions predict the formation of solid Al2O3, the deposition rate of the first reaction was considerably greater than that of the second. The third reaction was so slow that no measurable deposit was formed in 6 h at 1500°C. Formation of dense deposits of α-Al2O3 was favored by increasing temperature and decreasing pressure. Microstructural examination of the dense deposits showed long columnar grains, the largest of which extended through the deposit from the substrate to the surface.  相似文献   

14.
Phase equilibrium relations in the system Li2O-GeO2 were determined using standard quenching techniques. In contrast to published literature five congruently melting compounds were found to exist. They are Li2O·7GeO2, 3Li2O O·8GeO2, Li2O O·GeO2, 3Li2O O·2GeO2, and 2Li2O.-GeO2. The melting points, respectively, are 1033°± 5°C, 953°± 5°C, 1245°± 15°C, 1125°± 15°C, and 1280°± 15°C. Simple binary eutectic relations exist among the compounds. The eutectic temperature between 1:7 and GeO2 is 1025°± 1h0°C at about 96.8 wt% GeO2; the eutectic temperature between the 1:7 and 3:8 compounds is 935°± 10°C at about 90.9 wt% GeO2; the eutectic temperature between the 3:8 and 1:1 compounds is 930°± 10 °C at about 89.8 wt% GeO2. Liquidus data for compositions richer in lithia than the 1:1 compound are only approximate because of the difficulty of quenching them; the phase relations between the 1:1 and 3:2 and between the 3:2 and 2:l compounds, however, are found to be of the simple binary eutectic type. The glass–forming region was also determined. Melts allowed to cool in air crystallized. When, however, the melts were quenched, glasses containing as much as 8 wt% GeO2 could be prepared in 5–g quantities. Both the refractive index–composition and density–composition curves for the glasses showed maxi–mums at about 6 to 8 wt% Li2O.  相似文献   

15.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

16.
Above 755°C, compounds along the spinel join LiFe5O8-Li4Ti5O12 form a complete solid solution and below that temperature a two-phase region separates the ordered LiFe5O8 and the disordered spinel phase. At 800° and 900°C, cubic LiFeO2 ( ss ) and monoclinic LizTi03 ( ss ) exist on the monoxide join LiFeO2-Li2TiO3. The distributions of cations in both the spinel and monoxide structures were calculated as a function of equilibrium temperature and composition. Sub-solidus equilibria in the system Li2O-Fe2O3-TiO2 at 800° and 900°C were determined for compositions containing ∼50 mol% Li2O.  相似文献   

17.
The 1600° and 1700°C. liquidus lines in the CaO·2Al2O3 and A12O3 stability fields of the system CaO-Al2O3-SiO2 are determined from the chemical analyses of saturated slags at these temperatures.  相似文献   

18.
Liquidus phase equilibrium data are presented for the system Al2O3-Cr2O3-SiO2. The liquidus diagram is dominated by a large, high-temperature, two-liquid region overlying the primary phase field of corundum solid solution. Other important features are a narrow field for mullite solid solution, a very small cristobalite field, and a ternary eutectic at 1580°C. The eutectic liquid (6Al2O3-ICr2O3-93SiO2) coexists with a mullite solid solution (61Al2O3-10Cr2O3-29SiO2), a corundum solid solution (19Al2O3-81Cr2O3), and cristobalite (SO2). Diagrams are presented to show courses of fractional crystallization, courses of equilibrium crystallization, and phase relations on isothermal planes at 1800°, 1700°, and 1575°C. Tie lines were sketched to indicate the composition of coexisting mullite and corundum solid solution phases.  相似文献   

19.
Phase equilibria along the nonbinary join between cordierite (2MgO · 2Al2O3· 5SiO2) and spodumene (Li2O · Al2O3· 4SiO2) were investigated in the temperature range 800° to 1550°C. using the quench technique on fourteen compositions. The phase diagram at high temperatures is characterized by a very small region of solid solution on the cordierite side, appreciable solid solution on the spodumene side, and regions of three and four phases toward the center of the system, including liquid, α-cordierite, mullite, spinel, corundum, and β-spodumene and its solid solutions. The liquidus has a flat minimum between 40 and 50% cordierite at 1347°, and rises on one side to the congruent melting point of β-spodumene (1421°) and on the other side to the temperature of complete melting of cordierite (1530°). The lowest temperature at which liquid appears is 1325°. At low temperatures a complete series of metastable solid solutions exists between μ-cordierite and β-spodumene. The significance of the data in the preparation of thermal-shock-resisting bodies is discussed.  相似文献   

20.
SiO2-Al2O3 melts containing 42 and 60 wt% A12O3 were homogenized at 2090°C (∼10°) and crystallized by various heat treatment schedules in sealed molybdenum crucibles. Mullite containing ∼78 wt% A12O3 precipitated from the 60 wt% A12O3 melts at ∼1325°± 20°C, which is the boundary of a previously calculated liquid miscibility gap. When the homogenized melts were heat-treated within this gap, the A12O3 in the mullite decreased with a corresponding increase in the Al2O3 content of the glass. A similar decrease of Al2O3 in mullite was observed when crystallized melts were reheated at 1725°± 10°C; the lowest A12O3 content (∼73.5 wt%) was in melts that were reheated for 110 h. All melts indicated that the composition of the precipitating mullite was sensitive to the heat treatment of the melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号