首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
为了得到纯净的、具有较高生理和药理活性的单体人参皂苷Rh1,从三七中提取总皂苷,并对三七总皂苷进行分离纯化获得人参皂苷Rh1单体.分别经过乙醇浸提、石油醚脱脂、水饱和正丁醇萃取、大孔吸附树脂脱糖脱色及硅胶层析,从三七总皂苷中分离得到人参皂苷Rh1.结果表明,1 000 g三七干燥根经醇提、脱脂、萃取和脱糖脱色可制得三七...  相似文献   

2.
采用LK1300S小颗粒树脂柱层析结合结晶法,从三七总皂苷提取物中规模化制备分离人参皂苷Rb1.17 kg三七总皂苷提取物吸附于LK1300S小颗粒树脂柱,经70%甲醇水洗脱得到6.3 kg三七皂苷R1和人参皂苷Rg1、Re、Rb1的富集组分.将皂苷富集组分置于甲醇/水体系下进行结晶除杂后质量为5.63 kg,有效提高...  相似文献   

3.
大孔树脂法纯化刺玫果总皂苷工艺研究   总被引:4,自引:1,他引:3  
选取6种大孔吸附树脂对刺玫果总皂苷进行纯化,并采用静态吸附-解吸与动态吸附-解吸相结合的方法,确定大孔吸附树脂纯化刺玫果总皂苷的最佳工艺条件.采用紫外可见分光光度法测定刺玫果总皂苷的含量,并对工艺进行评价.试验结果表明,D-101型大孔吸附树脂的纯化效果最好,其最佳工艺为:上样药液总皂苷浓度为3.409 mg/mL,吸附速率为3 BV/h,解吸液乙醇浓度为95%,解吸速率为3 BV/h,最佳上柱药液pH值为89,洗脱剂用量为4倍柱体积;经D-101大孔吸附树脂纯化后刺玫果总皂苷的纯度为粗提物的3.99倍.结果表明,D-101大孔吸附树脂适用于刺玫果总皂苷的初步纯化.  相似文献   

4.
选取6种大孔吸附树脂对刺玫果总皂苷进行纯化,并采用静态吸附-解吸与动态吸附-解吸相结合的方法,确定大孔吸附树脂纯化刺玫果总皂苷的最佳工艺条件.采用紫外可见分光光度法测定刺玫果总皂苷的含量,并对工艺进行评价.试验结果表明,D-101型大孔吸附树脂的纯化效果最好,其最佳工艺为:上样药液总皂苷浓度为3.409 mg/mL,吸附速率为3 BV/h,解吸液乙醇浓度为95%,解吸速率为3 BV/h,最佳上柱药液pH值为8~9,洗脱剂用量为4倍柱体积;经D-101大孔吸附树脂纯化后刺玫果总皂苷的纯度为粗提物的3.99倍.结果表明,D-101大孔吸附树脂适用于刺玫果总皂苷的初步纯化.  相似文献   

5.
采用硅胶柱层析法分离绞股蓝总皂苷,以氯仿-甲醇混合液为流动相进行梯度洗脱,薄层层析法跟踪检测.5 000 g绞股蓝干草经乙醇提、石油醚脱脂、正丁醇萃取、AB-8大孔吸附树脂脱糖、D-296阴离子交换树脂脱色后得到总皂苷7.87 g.5 g绞股蓝总皂苷进行硅胶柱层析分离,在体积比为9.5:0.5和9:1的氯仿-甲醇洗脱液...  相似文献   

6.
利用大孔吸附树脂和硅胶层析相结合的方法,对人参皂苷Re的酶解产物进行分离提纯。结果表明,65.0g的Re酶解产物经大孔吸附树脂AB-8和D-296脱糖、脱色处理后,共得干燥粗产品37.0g,得率为56.9%。采用硅胶层析柱进一步分离纯化后,共得到纯度为96.0%的Rg1皂苷11.2g,在粗产品中的得率为30.2%;得到纯度为98.0%的稀有人参皂苷F1皂苷4.75g,在粗产品中的得率为12.8%。Re经人参皂苷酶转化得到Rg1皂苷的得率为17.2%,F1皂苷的得率为7.31%。  相似文献   

7.
报道了朱砂根皂苷的提取实验.朱砂根经乙醇浸泡得到朱砂根皂苷,大孔吸附树脂吸附皂苷,水及低浓度乙醇洗、除杂质,70%醇洗得朱砂根皂苷,其提取得率为5.19%.经薄层层析和高效液相色谱检测,得到的朱砂根皂苷中含有4个糖基的朱砂根皂苷,即3-o-[-β-D-木糖基-(1→2)-β-D-葡萄糖基-(1→5)-基;β-D-葡萄糖基-(1→2)-L-阿拉伯糖基]-朱砂根皂苷元.  相似文献   

8.
原人参三醇组皂苷(简称PPT型皂苷)是人参中主要的两种四环三萜皂苷之一,在人参茎叶中含量相对较高,具有抗疲劳、抗应激等功效.本文以人参茎叶总皂苷为原料,研究了人参茎叶总皂苷浓度、吸附温度、吸附时间对D101C大孔吸附树脂对PPT型皂苷和PPD型皂苷的吸附影响,同时考察了乙醇浓度对D101C大孔吸附树脂解吸PPT型皂苷和PPD型皂苷的影响.实验结果表明:利用D101C大孔吸附树脂在15℃温度下吸附浓度为15 mg/m L的人参茎叶总皂苷14 h,再利用45%的乙醇水溶液于25℃解吸14 h人参茎叶皂苷时,PPT型皂苷的含量由原来的27.2%提高到86.8%,PPT型皂苷:PPD型皂苷由1.1 1提高到185 1,显示出良好的PPT皂苷的分离及提纯效果.  相似文献   

9.
用正交法考察了各因素对浸取纯化三七总皂苷的影响,确立了离子交换纤维纯化三七总皂苷的最佳工艺.结果表明:浸取三七总皂苷的最佳条件为温度65℃,时间2 h,浸提剂体积20mL/g(三七粉),浸提次数3次,浸提率7.68%;在质量浓度为1.152 mg.mL-1条件下,强碱阴离子交换纤维静态吸附三七总皂苷的最佳条件是温度65℃,pH=8,皂苷体积250 mL/g(纤维),吸附率为91.02%;吸附在强碱阴离子交换纤维上的三七总皂苷的静态解吸的最佳条件是pH=1,温度70℃,解吸剂质量分数60%和解吸剂体积900 mL/g(饱和纤维),解吸率92.21%.上述结果表明用强碱阴离子交换纤维提取纯化三七总皂苷是可行的.  相似文献   

10.
报道了朱砂根皂苷的提取实验。朱砂根经乙醇浸泡得到朱砂根皂苷,大孔吸附树脂吸附皂苷,水及低浓度乙醇洗、除杂质,70%醇洗得朱砂根皂苷,其提取得率为5.19%。经薄层层析和高效液相色谱检测,得到的朱砂根皂苷中含有4个糖基的朱砂根皂苷,即3-o-[--βD-木糖基-(1→2)-β-D-葡萄糖基-(1→5)-基;β-D-葡萄糖基-(1→2)-L-阿拉伯糖基]-朱砂根皂苷元。  相似文献   

11.
为了得到高纯度的油茶皂苷,研究了AB-8大孔吸附树脂纯化油茶皂苷的方法,测定了AB-8大孔吸附树脂吸附容量为37.1 mg/g。结果表明,最佳乙醇洗脱体积分数为80%,最佳洗脱体积流量为1.5V/h,最佳碱液浓度为0.1 mol/L;在此条件下,所得油茶皂苷的纯度可达96.7%。  相似文献   

12.
AB-8大孔吸附树脂纯化油茶皂苷   总被引:1,自引:0,他引:1  
为了得到高纯度的油茶皂苷,研究了AB-8大孔吸附树脂纯化油茶皂苷的方法,测定了AB-8大孔吸附树脂吸附容量为37.1 mg/g。结果表明,最佳乙醇洗脱体积分数为80%,最佳洗脱体积流量为1.5V/h,最佳碱液浓度为0.1 mol/L;在此条件下,所得油茶皂苷的纯度可达96.7%。  相似文献   

13.
利用AB-8大孔吸附树脂和D-280离子交换树脂从黄芪皂苷生物转化产物中富集黄芪甲苷,采用薄层层析和高效液相色谱进行检测.测得AB-8树脂吸附容量为27.8 g/L,确定了洗脱剂为70%的乙醇溶液;黄芪皂苷生物转化产物经AB-8和D-280树脂纯化后,最终得率为24.92%,黄芪甲苷相对含量得到明显提高.  相似文献   

14.
酶法改变Rb1、Rb2、Rc、Rd等人参二醇类皂苷制备低糖基次生皂苷,中间产品的主要成分除Rh2皂苷之外,还含有Rh3、Rh1、Rg3等稀有皂苷.以人参皂苷Rg3为目标,采用柱层析的方法来分离其中间产品,从43 g样品中分离得到Rh2组分19.2 g,Rh3组分2.42 g,Rg3组分4 g,并用沉淀方法提纯Rg3.通过HPLC检测,人参皂苷Rg3有20-R型和20-S型异构体,54%为20(R)-Rg3,46%为20(S)-Rg3.  相似文献   

15.
酶法改变Rb1、Rb2、Rc、Rd等人参二醇类皂苷制备低糖基次生皂苷,中间产品的主要成分除Rh2皂苷之外,还含有Rh3、Rh1、Rg3等稀有皂苷。以人参皂苷Rg3为目标,采用柱层析的方法来分离其中间产品,从43 g样品中分离得到Rh2组分19.2 g,Rh3组分2.42 g,Rg3组分4 g,并用沉淀方法提纯Rg3。通过HPLC检测,人参皂苷Rg3有20-R型和20-S型异构体,54%为20(R)-Rg3,46%为20(S)-Rg3。  相似文献   

16.
以人参根须为原料,采用甲醇浸提法提取人参根须中总皂苷,再用硅胶柱层析法对总皂苷进行分离,得到较纯净的人参皂苷单体Rf.结果表明,500 g人参根须中提取得到总皂苷20.5 g,提取率为4.10%.总皂苷中主要含Rg1、Re、Rf、Rb1、Rc、Rb2、Rd等成分.20.5 g人参根须总皂苷经硅胶柱层析法分离,得到较纯人...  相似文献   

17.
酶转化人参皂苷C-K的提取工艺   总被引:2,自引:2,他引:0  
以粗品人参皂苷C-K为原料,进行脱色、脱脂、硅胶柱层析法分离纯化,得到纯度较高的人参皂苷C-K。结果表明,粗品人参皂苷C-K样品利用D-296树脂脱色柱脱色,除去色素占总质量的4.74%,石油醚脱脂共除去杂质占总质量的7.46%;应用硅胶柱法分离得到较纯人参皂苷C-K得率为41.2%;样品结晶后收率为90%,高效液相色谱检测结晶产物中稀有人参皂苷C-K的质量分数为98.09%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号