首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(2-aminoadenylic acid): interaction with poly(uridylic acid)   总被引:1,自引:0,他引:1  
Poly(2-aminoadenylic acid) forms both double and triple helices with poly(uridylic acid) [poly(U)]. The 2-amino group forms a third hydrogen bond, elevating the 2 leads to 1 transition temperature by 33 degrees C. The third strand, however, has about the same stability as poly(A)-2poly(U), as measured by Tm 3 leads to 2. This selective stabilization of the two-stranded helix results in a much greater resolution of the differnt thermal transitions than that observed in analogous polynucleotide systems. In contrast to other A, U systems 3 leads to 1 and 2 leads to 3 transitions are not observed under any conditions, and the triple helix always undergoes a 3 leads to 2 transition even at very high ionic strength. A 1:1 mixture of poly(2NH2A) and poly(U) exhibits no transient formation of 1:2 complex, unlike similar mixtures of poly(A) with poly(U) and poly(T). This difference is evidently due to a more rapid displacement reaction: [poly(2NH2A) + poly(2NH2A)-2poly(U) leads to 2 poly(2NH2A)-poly(U)] With poly(2NH2A) than with poly(A). We describe a method for establishing the combining ratios of polynucleotide complexes which used a computer to calculate the angles of intersection of mixing curves as explicit and continuous functions of the wavelength. The wavelength dispersions of the angles of intersection determine optimum wavelengths for establishing stoichiometry and can also provide reliable negative evidence that presumably plausible complexes are not formed. Analogous computer procedures have been developed to determine wavelengths which are selective for the formation of both 1:1 and 1:2 complexes. Infrared spectra of the 1:1 and 1:2 complexes resemble those of other A, U homoribopolynucleotide helices in having two and three strong bands, respectively, in the region of carbonyl stretching vibrations. CD spectra of the two complexes are unusual in having negative first extrema of moderate intensity. We attribute these extrema to intrastrand interactions of strong, well-resolved transitions at 278 nm (B2u) of the 2-aminoadenine residues. The CD spectra are correlated with those of other polynucleotide helices.  相似文献   

2.
Monocytes/macrophages (M/M) and CD4+ T cells are two important targets of human immunodeficiency virus (HIV) infection. Different strains of HIV-1 vary markedly in their abilities to infect cells belonging to the M/M lineage. Macrophagetropic (M-tropic) HIV-1 strains replicate well in primary lymphocytes as well as in primary macrophages; however, they generally infect T-cell lines poorly, if at all. Although promonocytic cell lines such as U937 have been used as in vitro models of HIV-1 infection of M/M, these cell lines are susceptible to certain T-cell-tropic (T-tropic) HIV-1 strains but are resistant to M-tropic HIV-1. In this study, we demonstrate that (i) certain U937 clones ("plus" clones), which are susceptible only to T-tropic HIV-1, become highly susceptible to M-tropic HIV-1 upon differentiation with retinoic acid (RA); (ii) other U937 clones ("minus" clones), which are resistant to both T- and M-tropic HIV-1, remain resistant to both viruses; and (iii) RA treatment induces expression of CCR5, a fusion/entry cofactor for M-tropic HIV-1 in both types of U937 clones, and yet enhances the fusogenicity of the plus clones, but not the minus clones, with M-tropic Env's. These results indicate that the major restriction of M-tropic HIV-1 infection in promonocytic cells occurs at the fusion/entry level, that differentiation into macrophage-like phenotypes renders some of these cells highly susceptible to infection with M-tropic HIV-1, and that CD4 and CCR5 may not be the only determinants of fusion/entry of M-tropic HIV-1 in these cells.  相似文献   

3.
To evaluate the feasibility of using transgenic rabbits expressing CCR5 and CD4 as a small-animal model of human immunodeficiency virus type 1 (HIV) disease, we examined whether the expression of the human chemokine receptor (CCR5) and human CD4 would render a rabbit cell line (SIRC) permissive to HIV replication. Histologically, SIRC cells expressing CD4 and CCR5 formed multinucleated cells (syncytia) upon exposure to BaL, a macrophagetropic strain of HIV that uses CCR5 for cell entry. Intracellular viral capsid p24 staining showed abundant viral gene expression in BaL-infected SIRC cells expressing CD4 and CCR5. In contrast, neither SIRC cells expressing CD4 alone nor murine 3T3 cells expressing CCR5 and CD4 exhibited significant expression of p24. These stably transfected rabbit cells were also highly permissive for the production of virions upon infection by two other CCR5-dependent strains (JR-CSF and YU-2) but not by a CXCR4-dependent strain (NL4-3). The functional integrity of these virions was demonstrated by the successful infection of human peripheral blood mononuclear cells (PBMC) with viral stocks prepared from these transfected rabbit cells. Furthermore, primary rabbit PBMC were found to be permissive for production of infectious virions after circumventing the cellular entry step. These results suggest that a transgenic rabbit model for the study of HIV disease may be feasible.  相似文献   

4.
5.
CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS.  相似文献   

6.
We previously demonstrated that gp120/160 (Env) of HIV-1 interact in a carbohydrate-specific manner with mannosyl/N-acetylglucosaminyl derivatives and that HIV-1LAI infection of monocytic U937 and lymphoid CEM cells was inhibited by CD4-free Concanavalin A-reactive glycopeptides from U937 cells. We report here that the natural glycoproteins bovine fetuin and asialofetuin, human orosomucoid and alpha-fetoprotein, and mannan, which all specifically interact with Env, inhibited infection of primary macrophages by macrophage-tropic HIV-1 strains, whereas dextran had no such effect. This activity was conserved if fetuin, asialofetuin, or orosomucoid were heat-treated, which rules out the role of their three-dimensional structure. Orosomucoid and mannan partially inhibited Env binding to macrophages but not to U937 or CEM cells. This indicates that Env does not bind in the same manner to primary macrophages and to immortalized CD4+ cells, and that orosomucoid and mannan act at CD4-independent stages of virus binding to macrophages. Mannan also inhibited Env binding to surface glycopeptides obtained after trypsin treatment of macrophages. Furthermore, orosomucoid and fetuin interacted with, and they inhibited the binding of a V3 loop B clade consensus peptide to several macrophage membrane proteins, including two 36 and 42 kDa proteins. These data indicate that these glycoproteins interfere with post-binding events during HIV-1 infection of primary macrophages. In contrast, the compounds did not affect infection of U937 or CEM cells by T-cell tropic HIV-1LAI nor infection of peripheral blood lymphocytes by HIV-1LAI or HIV-1(Ba-L). Thus, carbohydrate-specific inhibition of HIV infection depends on the cell type more than on the viral strain, and differences in the glycan structure of cell-type-specific cofactors may be important for HIV entry into cells.  相似文献   

7.
The mismatched double-stranded RNA (dsRNA), poly(I).poly(C12U), also termed Ampligen, exhibits a strong antiviral and cytoprotective effect on cells (human T-lymphoblastoid CEM cells and human T-cell line H9) infected with the human immunodeficiency virus type 1 (HIV-1). Untreated H9 cells infected with HIV-1 start to release the virus 3 days post-infection, while in the presence of 40 micrograms/ml (80 micrograms/ml) of poly(I).poly(C12U) the onset of virus production and release is retarded and does not occur before day 5 (day 6). We demonstrate that poly(I).poly(C12U) markedly extends the duration of the transient increase of 2',5'-oligoadenylate (2-5A) synthetase mRNA level and activity preceding virus production after infection of cells with HIV-1. Treatment of HeLa cells with poly(I).poly(C12U) was found to cause a significant increase in total (activated plus latent) 2-5A synthetase activity; no evidence was obtained that the level of latent (nonactivated) 2-5A synthetase is changed in cells treated with dsRNA plus interferon (IFN). Poly(I).poly(C12U) is able to bind and to activate 2-5A synthetase(s) from HeLa cell extracts. Addition of poly(I).poly(C12U) to HeLa cell extracts results in production of longer 2-5A oligomers (> or = 3 adenylate residues), which are better activators of RNase L. Both free and immobilized poly(I).poly(C12U) also bind to the dsRNA-dependent protein kinase (p68 kinase), resulting in autophosphorylation of the enzyme. Activation of the kinase by the free RNA occurs within a limited concentration range (10(-7) to 10(-6) grams/ml). Addition of HIV-1 Tat protein does not affect binding and activation of p68 kinase to poly(I).poly(C12U)-cellulose but strongly reduces the binding of the kinase to immobilized TAR RNA of HIV-1. We conclude that poly(I).poly(C12U) may antagonize Tat-mediated down-regulation of dsRNA-dependent enzymes.  相似文献   

8.
9.
10.
It has been hypothesized that programmed cell death (PCD), an active cell suicide process occurring in place of necrosis, can be associated with the pathogenesis of acquired immunodeficiency syndrome (AIDS). The entry of human immunodeficiency virus (HIV) into competent cells is mediated by the CD4 molecule present on the surface of certain lymphocyte subpopulations as well as on some cultured cell lines, e.g. U937 myelomonocytic cells. The present paper focuses on some specific aspects of PCD induced by the cytokine tumor necrosis factor (TNF). The results obtained indicate that the exposure of U937 cells to cycloheximide facilitates TNF-mediated PCD via a short term cell death program and modifies the expression of CD4 surface molecules. This change in surface antigen expression, manifested by internalization of the CD4 molecule, occurs in cells in which apoptosis has been triggered, but not in cells undergoing necrosis. These results indicate that the progression of cell death could be associated with specific alterations of certain surface molecules and could have a role in the entry of HIV into cells.  相似文献   

11.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

12.
The role of the T-cell activation antigen CD26 was evaluated in viral entry and infection of CD4(+)/CXCR4(+) cells by the lymphotropic HIV-1 Lai isolate. For this purpose, CEM T cells, which are permissive to HIV infection and express low levels of CD26, were used to establish by transfection four groups of cell clones expressing either low, high, and very high levels of CD26, or expressing the anti-sense RNA of CD26. Entry was monitored by the detection of proviral DNA synthesis and the kinetics of virus production, whereas the cytopathic effect was demonstrated by the occurrence of apoptosis. HIV entry and infection were consistently accelerated by at least 24 to 48 h in clones expressing high levels of CD26 compared to the parental cells or to the clones expressing low levels of CD26. Interestingly, infection of clones expressing very high levels of CD26 was not accelerated and showed a kinetics of infection similar to that of low CD26 expressing clones. Moreover, HIV infection was significantly reduced in the clones expressing CD26 anti-sense RNA. In the different clones, apoptosis was dependent on the severity of virus infection and occurred after the accumulation of HIV envelope glycoproteins. Our results demonstrate that with equivalently expressed levels of CD4 and CXCR4 in cell lines established from CEM cells, relatively high levels of CD26 contribute to an increased rate of HIV entry, infection, and apoptosis. Furthermore, they point out that overexpression of CD26 in a given cell line may lead to a negative effect on HIV infection. Consequently, CD26 appears to regulate HIV entry and apoptosis, processes which are critical for viral pathogenesis.  相似文献   

13.
Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3' end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5'-end-3'-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in higher eukaryotes.  相似文献   

14.
In this study, we demonstrate that the glycoprotein CD4, a member of the immunoglobulin superfamily, is a critical component of the receptor for human herpesvirus 7 (HHV-7), a recently discovered T-lymphotropic human herpesvirus. A selective and progressive downregulation of the surface membrane expression of CD4 was observed in human CD4+ T cells in the course of HHV-7 infection. Various murine monoclonal antibodies to CD4 and the recombinant soluble form of human CD4 caused a dose-dependent inhibition of HHV-7 infection in primary CD4+ T lymphocytes. Moreover, radiolabeled HHV-7 specifically bound to cervical carcinoma cells (HeLa) expressing human CD4. A marked carcinoma cells (HeLa) expressing human CD4. A marked reciprocal interference was observed between HHV-7 and human immunodeficiency virus (HIV), the retrovirus that causes the acquired immunodeficiency syndrome and also uses CD4 as a receptor. Previous exposure of CD4+ T cells to HHV-7 dramatically interfered with infection by both primary and in vitro-passaged HIV-1 isolates. Reciprocally, persistent infection with HIV-1 or treatment with the soluble form of gp120, the CD4-binding envelope glycoprotein of HIV-1, rendered CD4+ T cells resistant to HHV-7 infection. These data indicate that CD4 is critically involved in the receptor mechanism for HHV-7. The antagonistic effect between HHV-7 and HIV could be exploited to devise therapeutic approaches to AIDS.  相似文献   

15.
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1beta and SDF-1alpha, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry.  相似文献   

16.
The present study demonstrates cell surface expression of both CXC chemokine receptor 4 (CXCR4) and CC chemokine receptor 5 (CCR5), major coreceptors for T cell-tropic and macrophage-tropic strains of HIV, respectively, on CD34+ progenitor cells derived from the peripheral blood. CD34+ progenitor cells were susceptible to infection by diverse strains of HIV, and infection could be sustained for prolonged periods in vitro. HIV entry into CD34+ progenitor cells could be modulated by soluble CD4, HIV gp120 third variable loop neutralizing mAb and the cognate ligands for the CXCR4 and CCR5 HIV coreceptors. This study suggests that a significant proportion of the circulating progenitor cell pool may serve as a reservoir for HIV that is capable of trafficking the virus to diverse anatomic compartments. Furthermore, the infection and ultimate destruction of these progenitor cells may explain in part the defective lymphopoiesis in certain HIV-infected individuals despite effective control of virus replication during highly active antiretroviral therapy.  相似文献   

17.
OBJECTIVE: To identify risk factors for the detection of prevalent and incident anal human papillomavirus (HPV) infection, and HPV persistence among HIV-seropositive and seronegative homosexual men. DESIGN: Longitudinal study of 287 HIV-seronegative and 322 HIV-seropositive men attending a community-based clinic. METHODS: Subjects underwent an interview and examination; specimens were collected for HIV serology and assessment of anal HPV and HIV DNA. RESULTS: Anal HPV DNA was detected at study entry in 91.6% of HIV-infected men, and 65.9% of men not infected with HIV. HPV detection was associated with lifetime number of sexual partners and recent receptive anal intercourse (HIV-seronegative men), decreased CD4+ lymphocyte count (HIV-seropositive men), and anal warts (all men). Among men negative for HPV at study entry, subsequent detection of HPV was associated with HIV, unprotected receptive anal intercourse, and any sexual contact since the last visit. Among men positive for HPV at study entry, subsequent detection of additional HPV types was more common among HIV-seropositive men. Becoming HPV negative during follow-up was less common among men with HIV or high HPV levels at study entry. Among those with HIV, HPV persistence was associated with presence of anal HIV DNA, but not with CD4+ lymphocyte count. CONCLUSIONS: Risk of anal HPV infection appears to increase with sexual exposure, epithelial trauma, HIV infection and immune deficiency. Incident infection may result from recent sexual exposure or reactivation of latent infection. Further studies are needed to elucidate the mechanism by which HIV DNA in the anal canal increases the risk of HPV persistence.  相似文献   

18.
We have previously shown that infection of CD4(+) T lymphocytes with the T-lymphotropic human herpesvirus 7 (HHV-7) downregulates surface CD4, which represents the high-affinity receptor for HHV-7. In this study, we report that HHV-7 infection also causes a progressive loss of the surface CXC-chemokine receptor 4 (CXCR4) in CD4(+) T cells, accompanied by a reduced intracellular Ca2+ flux and chemotaxis in response to stromal cell-derived factor-1 (SDF-1), the specific CXCR4 ligand. Moreover, CXCR4 is downregulated from the surface of HHV-7-infected T cells independently of CD4. Because intracellular CXCR4 antigen and mRNA levels are unaffected in productively HHV-7-infected cells, the downregulation of CXCR4 apparently does not involve a transcritional block. Since CXCR4 functions in association with CD4 to permit entry of several human immunodeficiency virus (HIV) isolates, the potential of HHV-7 to persistently downregulate the surface expression of CXCR4 may provide novel strategies for limiting HIV infection.  相似文献   

19.
The Duffy Antigen Receptor for Chemokines (DARC) belongs to a family of erythrocyte chemokine receptors that bind C-X-C and C-C chemokines such as interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1) and regulated-on-activation, normal T cell-expressed and -secreted (RANTES), but not macrophage inflammatory protein 1 alpha (MIP-1 alpha) or MIP-1 beta. DARC has also been identified to a receptor for malaria parasites Plasmodium vivax and Plasmodium knowlesi. In the present study, we show that HIV-1 binds to RBCs from Caucasian individuals via DARC making RBCs able to transmit HIV to peripheral blood mononuclear cells (PBMCs). Furthermore, binding of HIV-1 particles to RBCs is inhibited by treating these cells with recombinant RANTES, but not with recombinant MIP-1 alpha prior to their incubation with HIV-1. This finding suggests that RBCs may function as a reservoir for HIV-1 or as a receptor for the entry of HIV-1 into CD4-cell subsets as well as neurons or endothelial cells.  相似文献   

20.
Chemokine receptors appear to be essential coreceptors (next to the CD4 receptor) for viral entry of HIV. Non syncytium inducing (NSI) HIV variants (monocytotropic) use the beta-chemokine receptor CCR5, syncytium inducing (SI) variants (lymphocytotropic) the alpha-chemokine receptor CXCR4. Mutations in CCR5 appear to give protection against HIV infection and to slow disease progression. Blocking of chemokine receptors interrupts HIV infection in vitro and offers new options for therapeutic strategies. Theoretical progress has been made in the development of an animal model for HIV infection owing to the elucidation of the role of chemokine receptors in HIV entry into the cell. In the future HIV variants will be classified according to their interaction with chemokine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号