首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以实际工作中遇到的主给水泵机械密封失效问题着手,从机械密封的冷却水设计流量、机械密封冷却水过滤器的选型、机械密封换热器的安装位置、转子定位以及机械密封辅助密封圈的选择几个方面逐一分析对机械密封失效的影响,从而确定了失效的主要原因是机械密封静环座辅助密封圈在轴向微动时摩擦力增加,辅助密封圈轴向微动时被“挂”在静环座上,使静环补偿能力变差;再叠加机械密封冷却水过滤器选型不当,加速了机械密封磨损失效,并针对上述问题进行了相关改进。  相似文献   

2.
针对旋转机械轴向端面密封在高速和低速状态时密封的低稳定性问题,应用TRIZ 创新理论,并结合解决物理矛盾的空间分离原理,提出一种外驱动式中间旋转环机械密封设计方案。该设计方案在密封端面的动环和静环之间设置由外置动力源驱动的中间旋转环,实现了动、静环密封面之间相对转速的主动控制。实验结果表明,外驱动式中间旋转环机械密封改善了机械密封在高速和低速状态下的稳定性,可满足不同工况下的密封要求;该机械密封泄漏量虽有所增大,但在允许的范围内。  相似文献   

3.
机械密封静环的动力学设计   总被引:2,自引:0,他引:2  
通过建立机械密封静环系统的动力学方程以及机械密封动特性参数的分析,结合某典型的八字形螺旋槽式液体机械密封的动特性参数计算结果,给出了机械密封静环系统的稳定性分析。  相似文献   

4.
叶飞 《机械》2012,39(3):75-77,80
对乳液丁苯橡胶装置中的碱液循环泵原有机械密封频繁失效的原因进行了分析,指出原有密封结构和材料不适合在该有腐蚀、颗粒介质工况下使用.改进了密封结构、辅助O形圈的材料及摩擦副材料,机械密封背部节流环设计为浮动节流环,并对机械密封进行了设计计算.改进后机械密封投入运行,取得了良好的密封效果,浮动节流环节省了背部冲洗液.  相似文献   

5.
高温、高压、高速等极端工况对机械密封的设计提出了更高的要求,在对高参数机械密封结构、使用工况及受损件分析的基础之上提出静环摩擦副的相容性设计方法。该方法的核心是在设计过程中考虑机械密封静环摩擦副石墨和不锈钢的相容性问题,相容性的判断依据是石墨环所受热应力是否超过其机械强度许用值。建立静环摩擦副的有限元仿真模型,通过实例对静环摩擦副的相容性问题进行了说明。研究结果表明:通过相容性设计可以调整机械密封静环摩擦副石墨环所受的热应力,减少高参数工况下机械密封失效问题的发生。  相似文献   

6.
秦山第二核电厂一台改造后的安全厂用水系统(SEC系统)反冲洗泵自投运后多次出现机械密封泄漏问题,严重影响了该泵的正常运行。而该泵机械密封静环材质为聚四氟乙烯,不同于一般的机械密封静环材质。本文通过对这种机械密封结构及缺陷情况介绍,分析这种机械密封的特性,总结出聚四氟乙烯作为静环材质在使用过程中的一些注意事项。  相似文献   

7.
随着回转式流体输送机械的不断发展,机械密封得到了越来越广泛的应用,并对机械密封的密封质量也提出了越来越高的要求。而衡量机械密封密封质量的最重要和最明显的标志就是端面漏泄量和摩擦付环的使用寿命。在研究端面的漏泄和摩擦付环的使用寿命时发现端  相似文献   

8.
某柴油加氢改质装置液力透平采用旋转式串联机械密封和基于API标准的PLAN 53B冲洗方案的辅助密封系统,在试运行时发现机械密封泄漏严重。通过对机械密封结构和辅助密封冲洗系统的分析,指出机械密封泄漏的主要原因是,泵送环扬程不足及换热器管路阻力过大,旋转式串联密封动环波动影响摩擦热和介质传导热的排出,高温下隔离液会气化等。通过对换热器和泵送环的改造,降低了隔离液腔和密封腔温度;将旋转式串联密封改为静止式双端面密封,提高了换热效率;采用高沸点隔离液,解决了隔离液的气化问题。机械密封改造后,取得了较好的密封效果,且降低了液力透平电机的负荷。  相似文献   

9.
针对H_2S风机密封的要求,分析对比了骨架密封、机械密封、抽气密封、充气密封的优缺点,设计了一种新型三瓣环碳环密封 抽气密封 充气密封的组合密封。  相似文献   

10.
分析某电厂600 MW机组湿法烟气脱硫系统进口侧进式搅拌器机械密封存在的泄漏问题,对该机械密封进行改进。改进后的机械密封采用静止型弹簧、多弹簧、内藏式设计以及单端面、平衡型、零部件模块式设计。动环和静环分别采用无压烧结碳化硅和无压微孔加碳碳化硅,利用静环蓄能孔隙的润滑油润滑密封端面,确保了机械密封端面的有效润滑,延长了机械密封的使用寿命。该新型密封装置已成功应用于600 MW机组湿法脱硫进口侧进式搅拌器。  相似文献   

11.
变工况条件下机械密封端面稳定性实验研究   总被引:1,自引:0,他引:1  
通过机械密封端面稳定实验,探讨了热油泵机械密封在工况变化时动环开启失效机制,分析了相同温度和不同压力、相同压力和不同温度2种情况下机械密封稳定性.结果表明,热油泵机械密封在工况变化时会因闪蒸而开启失效;在工况变化瞬时,密封流体温度和压力都直接影响端面闪蒸的剧烈程度和动环的最大开启量.  相似文献   

12.
机械密封动环和静环之间形成的润滑膜厚度是其稳定运行的一个重要评价指标,为实现润滑膜厚度的非接触检测,根据机械密封润滑膜的特点,构建了接触式机械密封润滑膜的超声检测模型,并推导了润滑膜厚度的计算公式.指出机械密封在运行过程中会产生两相流,准确测量机械密封润滑膜的厚度,必须考虑密封介质的两相问题.引入中间变量混合因子,通过...  相似文献   

13.
介绍了氮气鼓风机机械密封多次失效的事故现象及特点。根据机械密封及迷宫密封工作原理,结合事故的特征,从设计、维修及操作等方面对事故原因进行了分析,确认催化剂粉尘导致机械密封磨损而泄漏,静环被卡死造成密封失效。未设计隔离气及操作压力过高造成粉尘的进入,机封外套过盈量大导致静环卡死。采取机械密封、润滑油进行更换;磨削静环外圈,使其活动自如;严格防止出口压力过高等措施,保证机械密封安全运行。  相似文献   

14.
1 现有接触式机械密封的缺点现有辅助密封大都采用橡胶O形圈,不能耐高温。采用柔性石墨的密封又因要压紧密才能密封因而失去了静环动环的浮动缓冲作用,就不可能保证动静环密封面始终贴紧,即使是非接触式机械密封也会因动静环间隙不均匀而影响其性能。2 从分子密封学角度构思新型半球形机械密封将辅助密封改成波纹管(动环上) ,使柔性石墨或金属平垫处于三向受压状态,以保证可靠密封,将动环、静环制成两个相配合的半球体与半球座,在静环半球体上嵌装石墨环,依靠球体与球座间的微小滑动及波纹管的可挠变性来起到动环、静环的浮动缓冲作用,参…  相似文献   

15.
机械密封作为重要的基础件之一被广泛地应用于各种旋转设备中,它的质量和性能直接影响并决定着设备的工作性能.影响机械密封性能的因素有很多,在机械密封工作中动环、静环的温度分布就是其中重要的一个.本文利用Fluent软件,以N-S方程为基础,采用现实K-ε双方程的湍流模型对机械密封的动环、静环在密封运转稳定状态下密封环温度场...  相似文献   

16.
350MW机组给水泵机械密封泄漏原因分析及对策   总被引:2,自引:1,他引:1  
根据GSB6×14型汽动给水泵的机械密封在华能大连电厂的运行故障模式的统计,得出机械密封泄漏的主要原因是动静环损坏,并通过与本厂稳定运行了20来年的GHT5/5型给水泵的比较,从机械密封动静环恶劣工作环境、给水泵振动等几个方面并结合具体案例进行了详细分析,得出机械密封动静环不能保持长周期安全运行的主要原因,同时针对所分析的机械密封泄漏原因给出了解决问题的具体应对措施,对大型给水泵的正确维护具有一定的借鉴意义。  相似文献   

17.
机械密封端面的动压效应研究   总被引:2,自引:0,他引:2  
刘录  沈齐英  邵予工 《现代机械》2002,(3):33-36,11
通过机械密封端面运动状况实验 ,讨论了机械密封端面倾斜而产生的动压效应对端面稳定的影响 ,提出动压作用下机械密封端面开启失效机理 ,分析了机械密封端面开启失效与动环密封圈摩擦力等各种因素的必然关系  相似文献   

18.
利用ANSYS对流体静压式核电站主泵密封的第二级密封动环组件建模,计算得到密封环在高压下的变形情况,通过Fluent对核电站主泵第二级密封在高压情况下端面流场建模,得到密封端面流场的压力分布、速度场及密封的开启力和泄漏量.计算模拟了机械密封环的端面变形及机械密封由接触式机械密封转变为非接触式机械密封过程.结果表明,核电站主泵的第二级密封的动环组件在第一级密封失效的情况下会通过变形形成收敛面非接触型机械密封,并能在工况要求的情况下正常工作.  相似文献   

19.
提高机械密封的密封质量,除了密封结构和密封材料方面的问题以外,还有一个不可忽视的重要环节就是机械加工工艺问题。对于机械密封而言,最重要的则是摩擦副环的端面加工。为了保证机械密封质量,摩擦副环的端面光洁度和波纹度均有较高的要求。尽管密封压  相似文献   

20.
《流体机械》2021,49(4)
根据转子动力学及机械密封动态特性基本原理,考虑机械密封摩擦副的支撑刚度和阻尼,可以把摩擦副等效为柔性轴承,并将轴套和半分环看作一个整体;将主轴—半分环—轴套—机械密封简化为单盘转子系统。通过Ansys Workbench软件计算系统的临界转速及不平衡响应,并通过机械密封试验台进行验证。验证结果表明,半分环—轴套结构在共振频率下会产生较大的轴向位移,导致密封失效。试验结果对机械密封设计及工况实践具有指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号