共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
硫酸酯类离子液体对FCC汽油萃取脱硫性能的研究 总被引:1,自引:0,他引:1
以离子液体[Emim]S(硫酸乙酯-1-甲基-3-乙基咪唑)和[Epy]S(硫酸乙酯-N-甲基吡啶)作为萃取剂,将噻吩溶于正庚烷构成FCC汽油模拟体系。分别考察了单级萃取中剂油比、温度、粘度对脱硫率和分配比的影响。在多次萃取中,当萃取剂(离子液体)用量不变时,将其分成几等份进行多次萃取和-次性萃取相比较,可以显著提高脱硫率。结果表明,离子液体[Emim]S的脱硫效果比[Epy]S好。离子液体[Emim]S对噻吩的萃取动力学方程为:r表观=0.18CA-60.4,半衰期为6.3min,表明离子液体[Emim]S对该模拟体系的萃取为表观1—1级可逆萃取过程。模拟体系萃取脱硫适宜的条件为剂油比1:3,萃取温度30℃~40%。在该条件下,对FCC汽油进行萃取脱硫,离子液体[Emim]S和[Epy]S可以有效地脱除汽油中的含硫化合物,其中对噻吩的萃取能力最强。 相似文献
4.
汽油络合萃取脱硫实验研究 总被引:2,自引:0,他引:2
采用自制的脱硫络合萃取剂(TS-1),考察其对汽油中含硫化合物的脱除效果。在萃取温度20℃,萃取时间3min,相分离时间15min,剂油体积比为9%的条件下,FCC汽油A中的硫含量从619μg/g降到136μg/g,达到国Ⅲ车用汽油硫含量标准(〈150μg/g),汽油收率99.5%。在最佳操作条件下,还考察了TS-1对FCC汽油B、直馏汽油C和凝析汽油D的脱硫效果,使用较小剂油比,汽油B、C和D都可达到较高脱硫率。因此,络合萃取剂TS-1应用于汽油脱硫,具有对含硫化合物选择性好、用量少、汽油收率高和对汽油适应性优良等特点,在车用汽油深度脱硫方面展现了良好的应用前景。 相似文献
5.
合成了一种磷钼杂多酸离子液体[HMIM]3PMo12O40催化剂,将其用于FCC汽油催化氧化脱硫过程,考察了催化氧化时间、H2O2用量、催化剂用量及反应温度对模拟汽油脱硫率的影响;在最佳工艺条件下,考察了该催化剂对FCC汽油的脱硫效果。结果表明:当催化氧化时间为90 min、反应温度为60 ℃、n(催化剂)/n(S)=0.04、n(H2O2)/n(S)=4时,模拟汽油脱硫率可达91.6%;FCC汽油的脱硫率为87.8%,且催化剂有较好的循环使用性能,前4次循环使用的平均脱硫率为84.9%。 相似文献
6.
离子液体的萃取脱硫性能研究 总被引:1,自引:0,他引:1
采用不同性质的离子液体萃取脱除模拟油中的有机含硫化合物。以二苯并噻吩(DBT)和萘的正己烷溶液为模型柴油考察了离子液体的饱和萃取量和选择性。结果表明,离子液体萃取脱硫可以在10min内达到萃取平衡;随着离子液体与油相体积比增大脱硫效果明显改善;离子液体中的阳离子和阴离子对脱硫效果影响很大,疏水性离子液体BMIMPF6对硫化物的萃取量远远大于亲水性离子液体BMIMBF4的萃取量;离子液体与油相体积比为1:1时,BMIMPF6和BMIMBF4萃取柴油中的硫化物,硫含量可以从530ppm分别下降到290ppm和410ppm。 相似文献
7.
8.
9.
催化裂化汽油络合萃取深度脱硫实验研究 总被引:1,自引:0,他引:1
采用自制络合萃取剂TS-1对中国石油四川石化公司南充炼油厂催化裂化(FCC)重汽油和全馏分汽油进行脱硫,考察了萃取温度、萃取时间、相分离时间、萃取剂用量[m(萃取剂)/m(汽油)]等工艺条件对脱硫效果的影响,还研究了萃取剂对类型硫的选择性和萃取剂的脱硫效果。结果表明:最佳萃取温度为30℃,最佳萃取时间为7 min,最佳相分离时间为15 min;在最佳工艺条件下对硫质量分数为202×10-6的FCC重汽油脱硫,萃取剂用量为0.003,0.019时精制汽油的硫质量分数分别为138×10-6,49×10-6,汽油收率分别为99.6%,99.5%;萃取剂对FCC重汽油和FCC全馏分汽油中硫醇硫的脱除率均为100.0%,对二硫化物硫的脱除率分别为66.7%和80.0%,对硫醚硫的脱除率分别为85.7%和87.5%,对噻吩硫的脱除率分别为42.1%和32.0%。 相似文献
10.
离子液体用于催化裂化汽油烷基化脱硫的实验室研究 总被引:1,自引:0,他引:1
将离子液体用于催化裂化汽油烷基化脱硫实验,考察了不同阳离子、阴离子、阴阳离子比例对催化裂化汽油脱硫率的影响。研究结果表明,在离子液体作用下,FCC汽油中噻吩类硫化物与烯烃发生烷基化反应,生成了沸点更高的烷基化产物。由于叔胺盐阳离子在具有Lewis酸性的同时还有Broensted酸性,由它形成的离子液体酸性较强。与CuCl、SnCl2相比,由AlC13提供阴离子合成的离子液体的酸性最强,更适合做烷基化催化剂。由AlCl3与Et3NHCl按摩尔比为2:1合成的离子液体作用于FCC汽油,脱硫率在70%以上,汽油收率在95%以上,辛烷值基本无变化。 相似文献
11.
Abstract CuCl-based ionic liquid ([HMim]Cl/CuCl) was synthesized by mixing 1-hydracid-3-methylimidazolium chloride ([HMim]Cl) with CuCl. Ionic liquid ([HMim]Cl/CuCl) was employed as an extractant remove sulfur from gasoline. It was found that [HMim]Cl/CuCl can remove sulfur-containing compounds from gasoline at room temperature. The extractive desulfurization mechanism of ionic liquid was proposed. The effects of extractive conditions on desulfurization of gasoline was investigated. The used ionic liquids can be regenerated by re-extraction using tetrachloromethane and reused five times. 相似文献
12.
The high shear agitation device was first adopted for gasoline desulfurization by ionic liquids. The effect of benzylimidazol fluoborate in desulfurization of gasoline and the influence of moisture on deuslfurization rate were investigated. The experimental results showed that the ionic liquid could effectively decrease the sulfur content of gasoline and the optimal conditions were as follows: The reaction could be carried out at room temperature, a volumetric ratio between oil and the liquid of 2∶1, a volumetric ratio between water and ionic liquid of 0.04∶1, a rotational speed of 5 krad/s, and a reaction time of 1 minute. The desulfurization rate of gasoline reached 53.6%, and the gasoline yield was up to 97.3%. The ionic liquid could be recycled for repeated use, and the use of high shear agitation for gasoline would have good prospects. 相似文献
13.
离子液体萃取脱硫的研究 总被引:4,自引:5,他引:4
合成了一系列离子液体用于模拟油的萃取脱硫实验,考察了不同离子液体及其与模拟油的质量比、反应温度和反应时间等因素对模拟油萃取脱硫效果的影响。实验结果表明,离子液体1-丁基-3-乙基咪唑氯盐([BEIM]Cl)的萃取脱硫效果明显优于其他离子液体。当以[BEIM]Cl为萃取剂时,萃取脱硫的最优条件为:[BEIM]Cl与模拟油的质量比1.0,萃取温度30℃,萃取时间30min。在此条件下,单级脱硫率可达52.02%;经5级脱硫后,总脱硫率高达96.56%。采用溶剂反萃取法对[BEIM]Cl进行了再生,再生后[BEIM]Cl的脱硫率可达新鲜[BEIM]Cl的95%。 相似文献
14.
磷酸酯类离子液体在燃油深度脱硫中的应用 总被引:10,自引:6,他引:10
研究了3种磷酸酯类离子液体,即1,3-二甲基咪唑磷酸二甲酯盐([MM im]DM P)、1-乙基-3-甲基咪唑磷酸二乙酯盐([EM im]DEP)和1-丁基-3-甲基咪唑磷酸二丁酯盐([BM im]DBP)的制备过程,考察了这3种磷酸酯类离子液体对模型油中3-甲基噻吩、苯并噻吩和二苯并噻吩的脱除效果及磷酸酯类离子液体的电化学再生方法。实验结果表明,这3种磷酸酯类离子液体的脱硫能力强弱顺序为:[EM im]DEP>[BM im]DBP[MM im]DM P;且对二苯并噻吩的脱除效果最好,对苯并噻吩的脱除效果次之,对3-甲基噻吩的脱除效果较差。以[EM im]DEP为萃取剂,油剂质量比为1∶1时,经5次萃取后,二苯并噻吩的脱除率可达到99.5%。利用电解法对[EM im]DEP进行了再生,在5~10V电压下电解10h,[EM im]DEP的脱硫率可以达到新鲜[EM im]DEP的90%以上。 相似文献
15.
Abstract Six Lewis acid ionic liquids were synthesized and employed as extractants for desulfurization of the model oil containing dibenzothiophene (DBT). Very promising ionic liquid was 1-butyl-3-methylimidazolium chloride-FeCl3 ([bmim]Cl/FeCl3), which performed best in the studied ionic liquids under the same operating conditions. It can remove DBT from model oil after continuous extraction for four steps, and the desulfurization efficiency can reach 97.9% under mild reaction conditions. Other sulfur-containing compounds were also investigated. The used ionic liquid could be regenerated six times without a significant decrease in activity. 相似文献
16.
Abstract Extraction of S-compounds from diesel oil by task-specific ionic liquids has been investigated. The influences of different ionic liquids, extraction time, extraction temperature, different S-compounds, the amount, and the recycling of ionic liquid were studied. This process is capable of removing up to 56% of dibenzothiophene in model diesel oil under optimum extraction conditions. At the same time, this process was applied to the real predesulfurized diesel oils. The results indicate that such a process could be an alternative to common hydrodesulfurization for deep desulfurization. 相似文献
17.
离子液体用于燃料油脱硫是一种环境友好的新技术。综述了离子液体用于燃料油脱硫的几种方法,包括直接萃取法、氧化-萃取法、络合萃取法和烷基化法,介绍了离子液体的几种再生方法,并进行了对比。 相似文献
18.
综述了近年来离子液体在萃取精馏领域应用的基础性研究进展。主要介绍了在离子液体中的无限稀释活度系数的测定、汽液平衡的测定、含离子液体物系相平衡与活度系数模型研究以及离子液体萃取精馏的应用。目前离子液体用于萃取精馏存在基础性研究不足、生产成本高和工程应用等方面的问题。 相似文献
19.
T. Adžamić K. Sertić-Bionda N. Marcec-Rahelic 《Petroleum Science and Technology》2013,31(18):1936-1945
Abstract Extractive desulfurization of fluid catalytic cracking (FCC) gasoline with sulfolane was studied in a batch apparatus. The influence of three inlet parameters (temperature, inlet sulfur content, and solvent ratio) on the process response, that is, desulfurization efficiency, was investigated with the use of a Box-Behnken experimental design by response surface methodology. A mathematical model that can be used for predicting sulfur content in raffinate after extractive batch processing with sulfolane was statistically developed and proven with analysis of variance. Statistical analysis showed that the largest influence on desulfurization efficiency was solvent ratio, the second most significant influence was inlet sulfur content, followed by temperature, and last the interaction between solvent ratio and inlet sulfur content. The obtained second-order polynomial model shows that maximum desulfurization efficiency of 65.34% can be achieved at temperature of 50°C and higher values of inlet sulfur content and solver ratio in the researched range of inlet parameter values. 相似文献