首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Powders of pure and 5% ytterbium substituted strontium cerate (SrCeO3/SrCe0.95Yb0.05O3−δ) were prepared by spray pyrolysis of nitrate salt solutions. The powders were single phase after calcination in nitrogen atmosphere at 1100 °C (SrCeO3) and 1200 °C (SrCe0.95Yb0.05O3−δ). Dense SrCeO3 and SrCe0.95Yb0.05O3−δ materials were obtained by sintering at 1350–1400 °C in air. Heat treatment at 850 and 1000 °C, respectively, was necessary prior to sintering to obtain high density. The dense materials had homogenous microstructures with grain size in the range 6–10 μm for SrCeO3 and 1–2 μm for SrCe0.95Yb0.05O3−δ. The electrical conductivity of SrCe0.95Yb0.05O3−δ was in good agreement with reported data, showing mixed ionic–electronic conduction. The ionic contribution was dominated by protons below 1000 °C and the proton conductivity reached a maximum of 0.005 S/cm above 900 °C. In oxidizing atmosphere the p-type electronic conduction was dominating above 700 °C, while the contribution from n-type electronic conduction only was significant above 1000 °C in reducing atmosphere.  相似文献   

2.
Dry reforming of methane has been investigated on two series of catalysts either prepared by co-precipitation: n(NixMgy)/Al, NixMgy and NixAly or prepared by impregnation: Ni/MgO (mol% Ni = 5, 10). The catalysts, calcined at 600–900 °C, were characterized by different techniques: BET, H2-TPR, TPO, XRD, IR, and TEM-EDX analysis. The surface BET (30–182 m2 g−1) decreased with increasing the temperature of calcination, after reduction and in the presence of Mg element. The XRD analysis showed, for n(NixMgy)/Al catalysts, the presence of NiAl2O4 and NiO–MgO solid solutions. The catalyst reducibility decreased with increasing the temperature of pretreatment. The n(NixMgy)/Al catalysts were active for dry reforming of methane with a good resistance to coke formation. The bimetallic catalyst Ni0.05Mg0.95 (calcined at 750 °C and tested at 800 °C) presents a poor activity. In contrast, the 5% Ni/MgO catalyst, having the same composition but prepared by impregnation, presents a high activity for the same calcination and reaction conditions. For all the catalysts the activity decreased with increasing the temperature of calcination and a previous H2-reduction of the catalyst improves the performances. The TPO profiles and TEM-EDX analysis showed mainly four types of coke: CHx species, surface carbon, nickel carbide and carbon nanotubes.  相似文献   

3.
Calcined and reduced catalysts Pd/LaBO3 (B = Co, Fe, Mn, Ni) were used for the total oxidation of toluene. Easiness of toluene destruction was found to follow the sequence based on the T50 values (temperature at which 50% of toluene is converted): Pd/LaFeO3 > Pd/LaMnO3+δ > Pd/LaCoO3 > Pd/LaNiO3. In order to investigate the activation process (calcination and reduction) in detail, the reducibility of the samples was evaluated by H2-TPR on the calcined catalysts. Additionally, characterization of the Pd/LaBO3 (B = Co, Fe) surface was carried out by X-ray photoelectron spectroscopy (XPS) at each stage of the global process, namely after calcination, reduction and under catalytic reaction at either 150 or 200 °C for Pd/LaFeO3 and either 200 or 250 °C for LaCoO3. The different results showed that palladium oxidized entities were totally reduced after pre-reduction at 200 °C for 2 h (2 L/h, 1 °C/min). As LaFeO3 was unaffected by such a treatment, for the other perovskites, the cations B are partially reduced as B3+ (B = Mn) or B2+ even to B0 (B = Co, Ni). In the reactive stream (0.1% toluene in air), Pd0 reoxidized partially, more rapidly over Co than Fe based catalysts, to give a Pd2+/Pd4+ and Pd0/Pd2+/Pd4+ surface redox states, respectively. Noticeably, reduced cobalt species are progressively oxidized on stream into Co3+ in a distorted environment. By contrast, only the lines characteristic of the initial perovskite lattice were detected by XRD studies on the used catalysts. The higher activity performance of Pd/LaFeO3 for the total oxidation of toluene was attributed here to a low temperature of calcination and to a remarkable high stability of the perovskite lattice whatever the nature of the stream which allowed to keep a same palladium dispersion at the different stages of the process and to resist to the oxidizing experimental conditions. On the contrary, phase transformations for the other perovskite lattices along the process were believed to increase the palladium particle size responsible of a lower activity.  相似文献   

4.
The physicochemical, surface and catalytic properties of 10 and 20 wt% CuO, NiO or (CuO–NiO) supported on cordierite (commercial grade) calcined at 350–700 °C were investigated using XRD, EDX, nitrogen adsorption at −196 °C and CO oxidation by O2 at 220–280 °C. The results obtained revealed that the employed cordierite preheated at 350–700 °C was well-crystallized magnesium aluminum silicate (Mg2Al4Si5O18). Loading of 20 wt% CuO or NiO on the cordierite surface followed by calcination at 350 °C led to dissolution of a limited amount of both CuO and NiO in the cordierite lattice. The portions of CuO and NiO dissolved increased upon increasing the calcination temperature. Treating a cordierite sample with 20 wt% (CuO–NiO) followed by heating at 350 °C led to solid–solid interaction between some of the oxides present yielding nickel cuprate. The formation of NiCuO2 was stimulated by increasing the calcination temperature above 350 °C. However, raising the temperature up to ≥550 °C led to distortion of cuprate phase. The chemical affinity towards the formation of NiCuO2 acted as a driving force for migration of some of copper and nickel oxides from the bulk of the solid towards their surface by heating at 500–700 °C. The SBET of cordierite increased several times by treating with small amounts of NiO, CuO or their binary mixtures. The increase was, however, less pronounced upon treating the cordierite support with CuO–NiO. The catalytic activity of the cordierite increased progressively by increasing the amount of oxide(s) added. The mixed oxides system supported on cordierite and calcined at 450–700 °C exhibited the highest catalytic activity due to formation of the nickel cuprate phase. However, the catalytic activity of the mixed oxides system reached a maximum limit upon heating at 500 °C then decreased upon heating at temperature above this limit due to the deformation of the nickel cuprate phase.  相似文献   

5.
Phenol hydroxylation using Fe-MCM-41 catalysts   总被引:5,自引:0,他引:5  
Highly ordered iron-containing mesoporous material, Fe-MCM-41, with 0.5–4 Fe/Si mol% loading was prepared and characterization was performed using XRD, SEM/TEM, EDS, N2-sorption, and FT-IR and UV–vis spectroscopies. Fe-MCM-41 exhibited high catalytic activity in phenol hydroxylation using H2O2 as oxidant, giving phenol conversion of ca. 60% at 50 °C [phenol:H2O2 = 1:1, water solvent]. Effects of Fe contents in Fe-MCM-41 and catalyst concentration, temperature, solvent used, phenol/H2O2 mole ratios and H2O2 feeding method, and catalyst calcination temperature on conversion profiles were examined. Catalyst recycling was performed to investigate the extent of potential metal leaching. Comparisons in performance were also made using nano-sized Fe2O3 particles and Fe-salt impregnated MCM-41 as catalyst. Catechol to hydroquinone in product ratio was close to 2:1 in accordance with a free radical reaction scheme involving Fe2+/Fe3+ redox pair and the larger amount of Fe species always achieved the given phenol conversion at a shorter reaction time. As the calcination temperature increases from 400 to 800 °C increasing amount of Fe species came out from the MCM-41 framework. Both tetrahedral Fe and extra-framework Fe species were found catalytically active, but high dispersion of Fe species achieved in Fe-MCM-41 was an advantage.  相似文献   

6.
Sodium niobate powders were prepared by the polymerizable complex (PC) method using a water-soluble Nb–malic acid complex and sodium carbonate. Niobium oxide pentahydrated was dissolved in hot oxalic acid (OA) solution, followed by the addition of NH3 (30%) until pH 11, precipitating niobic-acid that was added into a solution of -malic acid (MA) at mole ratio of [MA]:[Nb]=2:1. Na2CO3 was added in the mole ratio [Na]:[Nb]=1:1, and the solvent was eliminated at 70 °C, forming a yellow gel without any segregation. The gel was calcined at 300 °C for 3 h, and the (Na---Nb---MA) heated material was calcined in the range of temperatures from 400 to 900 °C, from 5 min to 8 h. Pure NaNbO3 (NN), free from amorphous carbon, which crystallized at temperatures higher than 450 °C, was confirmed by a combined analysis using X-ray diffraction and UV–Raman spectroscopy. A correlation between the presence of residual carbon and the crystallite size, which was calculated using the Scherrer formula, was observed and qualitatively used to infer about this presence of residual carbon.  相似文献   

7.
A novel process concept called tri-reforming of methane has been proposed in our laboratory using CO2 in the flue gases from fossil fuel-based power plants without CO2 separation [C. Song, Chemical Innovation 31 (2001) 21–26]. The proposed tri-reforming process is a synergetic combination of CO2 reforming, steam reforming, and partial oxidation of methane in a single reactor for effective production of industrially useful synthesis gas (syngas). Both experimental testing and computational analysis show that tri-reforming can not only produce synthesis gas (CO + H2) with desired H2/CO ratios (1.5–2.0), but also could eliminate carbon formation which is usually a serious problem in the CO2 reforming of methane. These two advantages have been demonstrated by tri-reforming of CH4 in a fixed-bed flow reactor at 850 °C with supported nickel catalysts. Over 95% CH4 conversion and about 80% CO2 conversion can be achieved in tri-reforming over Ni catalysts supported on an oxide substrate. The type and nature of catalysts have a significant impact on CO2 conversion in the presence of H2O and O2 in tri-reforming in the temperature range of 700–850 °C. Among all the catalysts tested for tri-reforming, their ability to enhance the conversion of CO2 follows the order of Ni/MgO > Ni/MgO/CeZrO > Ni/CeO2 ≈ Ni/ZrO2 ≈ Ni/Al2O3 > Ni/CeZrO. The higher CO2 conversion over Ni/MgO and Ni/MgO/CeZrO in tri-reforming may be related to the interaction of CO2 with MgO and more interface between Ni and MgO resulting from the formation of NiO/MgO solid solution. Results of catalytic performance tests over Ni/MgO/CeZrO catalysts at 850 °C and 1 atm with different feed compositions confirm the predicted equilibrium conversions based on the thermodynamic analysis for tri-reforming of methane. Kinetics of tri-reforming were also examined. The reaction orders with respect to partial pressures of CO2 and H2O are different over Ni/MgO, Ni/MgO/CeZrO, and Ni/Al2O3 catalysts for tri-reforming.  相似文献   

8.
Hollow alumina microspheres have been prepared by microwave-induced (MI) plasma pyrolysis of atomized aerosols of precursor solutions and subsequent calcination at 1300 °C for 2 h. When an aqueous solution of 0.5 mol dm−3 Al(NO3)3 without any additives was used as a precursor, hollow -Al2O3 microspheres with a thick shell wall were prepared after post-calcination at 1300 °C. The addition of a polypropylene (PO)–polyethylene(EO) blockcopolymer (molecular weight: 2900–6500) to the precursor solution was effective for increasing the yield of hollow microspheres, but resulted in the formation of many cracks and holes in the thinned shell wall. Hollow alumina microspheres with a thin, but strong, shell layer could be prepared by the simultaneous addition of tetraethylorthosilicate.  相似文献   

9.
The aim of this work was to identify the optimum synthesis conditions and the most effective technique for noble metal deposition in a perovskite/palladium-based catalyst for natural gas combustion. The solution combustion synthesis (SCS) of perovskite/zirconia-based materials was investigated, by starting from metal nitrates/glycine mixtures. Characterization and catalytic activity tests were performed on as-prepared powders and then repeated after calcination for 2 h at 900 °C in calm air. Calcination appeared to be beneficial in that, despite lowering the specific surface area, it promoted the simultaneous crystallization of both LaMnO3 and ZrO2 and the half-conversion temperature (T50), regarded as an index of catalytic activity, was lowered. Two phases, both active towards methane oxidation – lanthanum manganate and palladium oxide – were combined so as to evaluate their synergism in terms of catalytic activity. Pd was therefore added either via incipient wetness impregnation on LaMnO3·2ZrO2 or through a one-step SCS-based route. Characterization and catalytic activity tests followed suit. Optimal composition and preparation routes were found: T50 was lowered from 507 °C – pure LaMnO3 prepared via SCS – to 432 °C attained with a 2% (w/w) Pd load on pre-calcined LaMnO3·2ZrO2.  相似文献   

10.
Crystalline galliosilicates with the beta structure have been synthesized from alkali-free hydrogels with the composition Ga2O3:xSiO2:12(TEA)2O:1285H2O, where x=40, 60, 80 and 100. The addition of an alkali (Ga2O3/Na2O=1.0) to the hydrogel in the form of sodium gallate decreased crystallization times at 135°C to 10 days from 14 days. Crystallization reactions are not stoichiometric and the crystals' silica-to-gallia ratio (SGR) is always less than that in the parent hydrogel. Thermal analysis has shown that TEA ions first decompose and are then thermally desorbed, probably in the form of Hofmann decomposition products. Residual hydrocarbons are burned at T>400°C. The calcined crystals have surface area in the 500–625 m2 g−1 range. FTIR experiments with chemisorbed pyridine have shown that the isomorphous substitution of Al(IV) with Ga(IV) atoms decreases the acid-site strength and changes the relative B/L acid-site ratio of the crystals. IR spectra at a desorption temperature of 500°C revealed that all the pyridine desorbed from B sites but not from L sites in Ga-beta, whereas the Al-beta analog retained pyridine on both L and B sites. Microcalorimetry experiments with ammonia at 150°C have revealed the existence of different acid-site (B+L) strengths and site populations. The total number of sites available to NH3 chemisorption and the number of strong acid sites show the same dependence on the SGR value of the crystals. 29Si MAS-NMR spectra contain a resonance at −111 ppm attributed to T(4Si,0Ga) groups and a second resonance at −102 ppm attributed to T(3Si,1Ga) groups. 71Ga NMR spectra confirm that Ga(IV) is the dominant species and that Ga(VI) formation depends, in part, on the thermal pretreatment applied to the crystals. 1H NMR results have revealed that after calcination in air at 500°C, there are residual hydrocarbon compounds in the beta microporous structure. This can be avoided if the organic template is decomposed in nitrogen at 500°C for 1 h and the decomposition products are removed oxidatively by a second calcination step in air at 550°C for 2 h.  相似文献   

11.
A 5 wt% CoOx/TiO2 catalyst has been used to study the effect of calcination temperature on the activity of this catalyst for CO oxidation at 100 °C under a net oxidizing condition in a continuous flow type fixed-bed reactor system, and the catalyst samples have been characterized using TPD, XPS and XRD measurements. The catalyst after calcination at 450 °C gave highest activity for this low-temperature CO oxidation, and XPS measurements yielded that a 780.2-eV Co 2p3/2 main peak appeared with this catalyst sample and this binding energy was similar to that measured with pure Co3O4. After calcination at 570 °C, the catalyst, which had possessed practically no activity in the oxidation reaction, gave a Co 2p3/2 main structure peak at 781.3 eV which was very similar to those obtained for synthesized ConTiOn+2 compounds (CoTiO3 and Co2TiO4), and this catalyst sample had relatively negligible CO chemisorption as observed by TPD spectra. XRD peaks indicating only the formation of Co3O4 particles on titania surface were developed in the catalyst samples after calcination at temperatures ≥350 °C. Based on these characterization results, five types of Co species could be modeled to exist with the catalyst calcined at different temperatures. Among these surface Co species, the Type A clean Co3O4 particles were predominant on a sample of the catalyst after calcination at 450 °C and highly active for CO oxidation at 100 °C, and the calcination at 570 °C gave the Type B Co3O4 particles with complete ConTiOn+2 overlayers inactive for this oxidation reaction.  相似文献   

12.
Zn–Mn–Ni–Oxide-based NTC thermistors with variable Ni/Mn ratios were fabricated from powder mixtures of recycled IZC, and commercial MnCO3 and NiCO3. Solid phases and electrical resistivity of each sintered sample were studied as a function of Ni/Mn ratio, sintering temperature and sintering time. At 1200 °C for 2 h, samples with the Ni/Mn ratios of 0.38 and higher were found to consist of cubic spinel as a major phase. After sintering at 1250 °C for 10 h, densification proceeded with a phase change from cubic spinel to tetragonal one. The electrical resistivity of the samples obtained at 1200 °C for 2 h progressively decreased with an increasing Ni/Mn ratio up to 0.38, at which the value became the lowest (4.2 × 103 Ω cm at room temperature) of all the samples fabricated.  相似文献   

13.
Supported LaCoO3 perovskites with 10 and 20 wt.% loading were obtained by wet impregnation of different Ce1−xZrxO2 (x = 0–0.3) supports with a solution prepared from La and Co nitrates, and citric acid. Supports were also prepared using the “citrate method”. All materials were calcined at 700 °C for 6 h and investigated by N2 adsorption at −196 °C, XRD and XPS. XRD patterns and XPS measurements evidenced the formation of a pure perovskite phase, preferentially accumulated at the outer surface. These materials were comparatively tested in benzene and toluene total oxidation in the temperature range 100–500 °C. All catalysts showed a lower T50 than the corresponding Ce1−xZrxO2 supports. Twenty weight percent LaCoO3 catalysts presented lower T50 than bulk LaCoO3. In terms of reaction rates per mass unit of perovskite calculated at 300 °C, two facts should be noted (i) the activity order is more than 10 times higher for toluene and (ii) the reverse variation with the loading as a function of the reactant, a better activity being observed for low loadings in the case of benzene. For the same loading, the support composition influences drastically the oxidative abilities of LaCoO3 by the surface area and the oxygen mobility.  相似文献   

14.
An aqueous (NH4)2CO3 coprecipitation method, based on that of Groppi et al. [Appl. Catal. A 104 (1993) 101–108] was used to synthesize Sr1−xLaxMnAl11O19− hexaaluminates. These materials were first synthesized by alkoxide hydrolysis. This synthesis route requires special handling of the starting materials and is not likely to be commercially practical. The materials prepared by (NH4)2CO3 coprecipitation have similar surface areas as those prepared by the alkoxide hydrolysis method. Their CH4 oxidation activity, measured as the temperature needed for 10% conversion of methane, is higher than those prepared by alkoxide hydrolysis. The La-substantiated material, LaMnAl11O19−, shows high surface area with 19.3 m2/g after calcination at 1400°C for 2 h. It is active for CH4 oxidation with T10% at 450°C using 1% CH4 in air and 70 000 cm3/h g space velocity. The stability and activity of LaMnAl11O19− prepared by (NH4)2CO3 coprecipitation method is a simple and important step forward for the application of CH4 catalytic combustion for gas turbines.  相似文献   

15.
A simple and convenient templating approach for the preparation of metal-oxide catalysts and supports has been studied. The method, based on the absorption of an aqueous solution of metal salts by cellulose material, followed by drying and combustion of the organic matrix, leads to the formation of high-surface area mesoporous materials with unusually high thermal stability. Examples include Ce–Zr mixed oxides (BET surface areas of 90–130 m2/g after calcination at 800°C for 2 h; 21–30 m2/g after 12 h at 1050°C) and La-stabilized alumina (BET surface areas of 275–320 m2/g after calcination at 800°C for 2 h, 88–141 m2/g after 12 h at 1050°C). The pore-size distribution, morphology, and the effect of preparation parameters on surface area are discussed.  相似文献   

16.
The effect of isovalent and aliovalent substitutions in Bi0.5Na0.485La0.005TiO3 (BNLT) compounds were studied within the additive ranges of 0–2.5 at%. The Zr4+, Nb5+ and Fe3+ ions were selected as the substituents. The modified BNLT compounds were prepared by conventionally mixed-oxide method. The calcination and sintering were performed at the temperatures of 750–850 °C and 1050–1150 °C, respectively. An increase in the substituents contents affected the physical and piezoelectric properties. The BNLT compositions with the addition of 1 at% Zr4+, Nb5+ and Fe3+ ions exhibited high relative permittivities (r) at 730, 735 and 660, respectively. The modified-BNLT with an addition of 1.0 at% Fe provided a piezoelectric coefficient (d33) of 155 pC/N, Curie temperature (Tc) of 320 °C and electromechanical coupling factors in planar (kp) and thickness (kt) modes of 15 and 45%, respectively.  相似文献   

17.
We synthesized high-quality and oriented periodic mesoporous organosilica (PMO) monoliths through a solvent evaporation process using a wide range of mole ratios of the components: 0.17–0.56 1,2-bis(triethoxysilyl)ethane (BTSE): 0.2 cetyltrimethylammonium chloride (CTACl): 0–1.8 × 10−3 HCl: 0–80 EtOH: 5–400 H2O. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images indicated that the mesoporous channels within the monolith samples were oriented parallel to the flat external surface of the PMO monolith and possessed a hexagonal symmetry lattice (p6mm). The PMO monolith synthesized from a reactant composition of 0.35 BTSE: 0.2 CTACl: 1.8 × 10−6 HCl: 10 EtOH: 10 H2O had a pore diameter, pore volume, and surface area – obtained from an N2 sorption isotherm – of 25.0 Å, 0.96 cm3 g−1 and 1231 m2 g−1, respectively. After calcination at 280 °C for 2 h in N2 flow, the PMO monolith retained monolith-shape and mesostructure. Pore diameter and surface area of the calcined PMO monolith sample were 19.8 Å, 0.53 cm3 g−1 and 1368 m2 g−1, respectively. We performed 29Si and 13C CP MAS NMR spectroscopy experiments to confirm the presence of Si–C bonding within the framework of the PMO monoliths. We investigated the thermal stability of the PMO monoliths through thermogravimetric analysis (TGA). In addition, rare-earth ions (Eu3+, Tb3+ and Tm3+) were doped into the monoliths. Optical properties of those Eu3+, Tb3+ and Tm3+-doped PMO monoliths were investigated by photoluminescence (PL) spectra to evaluate their potential applicability as UV sensors.  相似文献   

18.
SO2, which is an air pollutant causing acid rain and smog, can be converted into elemental sulfur in direct sulfur recovery process (DSRP). SO2 reduction was performed over catalyst in DSRP. In this study, SnO2-ZrO2 catalysts were prepared by a co-precipitation method, and CO and coal gas, which contains H2, CO, CO2 and H2O, were used as reductants. The reactivity profile of the SO2 reduction over the catalysts was investigated at the various reaction conditions as follows: reaction temperature of 300–550 °C, space velocity of 5000–30,000 cm3/g-cat. h, [reductant]/[SO2] molar ratio of 1.0–4.0 and Sn/Zr molar ratio of SnO2-ZrO2 catalysts 0/1, 2/8, 3/5, 5/5, 2/1, 3/1, 4/1 and 1/0. SnO2-ZrO2 (Sn/Zr = 2/1) catalyst showed the best performance for the SO2 reduction in DSRP on the basis of our experimental results. The optimized reaction temperature and space velocity were 325 °C and 10,000 cm3/g-cat. h, respectively. The optimal molar ratio of [reductant]/[SO2] varied with the reductants, that is, 2.0 for CO and 2.5 for coal gas. SO2 conversion of 98% and sulfur yield of 78% were achieved with the coal gas.  相似文献   

19.
The formation of cubic solid solutions in the system La2O3–ZrO2 by mechanochemical activation of a mixture of the oxides (molar ratio ZrO2 82%–La2O3 18%) is studied. After 6 h of activation at room temperature, a poorly crystalline cubic solid solution is formed, with ultimate crystallite sizes in the nanometer range. The mixtures activated during 1–3 h form the solid solution on subsequent heating at 1000 °C, while the non-activated mixture does not react, even after thermal treatment at 1200 °C. The solid solution obtained at room temperature undergoes partial structural ordering at temperatures between 800 and 1000 °C. Long time heating at temperatures of 1000 °C and above results in the formation of La2Zr2O7 and rejection of the excess ZrO2. Mechanochemical activation offers interesting possibilities for the synthesis of these materials at temperatures lower than those used in conventional processing, and for the control of their physicochemical and microstructural properties.  相似文献   

20.
We have used a complex sol–gel process to synthesize a family of compounds LiNixCo1−xO2 (x = 0, 0.25, 0.5, 0.75, 1). These compounds are candidates for electrode materials in high-energy-density batteries. Starting sols were prepared from xNi2+ + (1 − x) Co2+ acetates/ascorbic acid aqueous solutions by alkalizing with LiOH and NH3. With thermal treatment in air, nickel carbonates formed in quantities roughly proportional to Ni concentration. The carbonate impurities could not be fully removed by heating in air to high temperatures. Because formation of pure layered oxides was inhibited by the presence of the carbonates, we developed a new way to remove them from just-formed precursors by treating the intermediate phases (those formed after calcination at 750 °C) with concentrated HNO3 and H2O2. All resulting powders were phase pure by X-ray diffraction and were easily friable. Various electrochemical properties of compacts prepared from these powders were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号