首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,2–Dichloroethane (DCE) and trichloroethylene (TCE) were used as model compounds to study the oxidation of organic chemicals by ozone/ultraviolet radiation, ozone, and hydrogen peroxide/ultraviolet radiation. It was found that ozone/ultraviolet radiation oxidized both 1,2–dichloroethane and trichloroethylene in batch systems, at pH = 2 (phosphate buffer). At ozone concentrations in the 1 to 5 mg/L range, the reaction was first order in both ozone and substrate. At pH = 2 and initial ozone concentration 2.2–2.6 mg/L, rate constants (k)Q = 25 and 130 M-1sec-1 were observed for the ozone/ultraviolet radiation oxidation of DCE and TCE, respectively. The rat e constants for ozone oxidation of DCE and TCE without ultraviolet radiation were 4.3 and 47 M-1sec-1, respectively.

The higher rate of TCE oxidation implies that direct reaction occurs with the double bond. Finite reaction rate of DCE with ozone, and substantial increases in rate at higher pH imply the participatation of hydroxyl radicals in the oxidation of both compounds. For example, at pH = 7, initial ozone concentration of 2.3 mg/L, the ko for TCE oxidation by ozone/ultraviolet radiation is approximately 500 M?1 sec?1 almost too fast to measure in a batch system.The rate also is increased by increased ultraviolet radiation intensity, and by the presence of hydrogen peroxide, which acts as a catalyst.  相似文献   


2.
The disinfection effects of the ozone molecule alone and that of ozone decomposition products when inactivating Giardia muris cysts were investigated at bench-scale using two different ozone demand-free laboratory buffer systems. The first water was a 0.05 M phosphate buffer with hydrogen peroxide added at a 10:1 weight ratio. The second water was a 0.05 M phosphate – 0.01 M bicarbonate buffer which quickly scavenged radical species from ozone decomposition. The C3H/HeN mouse model was used to assess the infectivity of ozone treated cysts.

The phosphate-bicarbonate buffer system had significantly greater (P ≤ 0.05) inactivation of G. muris cysts than that observed in the phosphate buffer – peroxide system where ozone was completely decomposed in less than 120 s. Consequently, the design of ozone disinfection processes should maintain ozone residual for disinfection prior to the addition of hydrogen peroxide for the oxidation of other compounds.  相似文献   


3.
This article deals with the efficiency of an ozonation step in drinking water treatment plants remove pesticides. These tests are carried out with a laboratory technique, the “OZOTEST” method, which simulates operating conditions on site and allows a complete oxidation assessment.

Efficiency of the two oxidant systems – ozone and ozone coupled with hydrogen peroxide – is evaluated for 11 pesticides commonly analyzed in control laboratories. Comparison of the two systems is made in terms of pesticide removal, but also in terms of ozone consumption. Matrix effects and contact time are also taken into account, and an order of reactivity for each system considered is suggested.  相似文献   


4.
The disadvantage that chlorine as processing agent in the treatment of surface waters can lead to undesirable production of chlorinated hydrocarbon products, provided the impulse to involvement in alternate means of oxidation. This inevitably led the way to the means of oxidation used the most intensively in water treatment - ozone.

Extensive development work has been performed to optimize the dosage of ozone for water treatment. Potential users are kept informed on this technology through published data. Theory, however, is only one side of the problem, practical application quite another. Here technicians and engineers have been required to integrate oxidation and disinfection with ozone, into the technology for water treatment and to make this economic.

In Switzerland since the 1950s, more than 40 waterworks have been converted to ozone. The development and the experience that has been collected since the introduction of this technique is the subject of this paper, primarily in regard to cost development and cost economy through innovative engineering services for development, engineering and project execution.  相似文献   


5.
A simulation program is described, tested and used, to predict micropollutant removal in an ozonation bubble tower with or without hydrogen peroxide addition. To compute the removal efficiency, we need to know the chemical reactivity between organic compounds and oxidant species (molecular ozone and hydroxyl radicals), the ozone mass transfer from the gaseous phase to the liquid phase (kLa) and the hydrodynamic model describing the reactor. In this case, we divide the reactor into three parts (water arrival, air arrival and intermediate zones). Each part is modelled using completely stirred tank reactors in series (CSTR).

In each CSTR, the calculation of oxidant concentrations (O3, H2O2) is made through mass balance equations and a semi-empirical formula which gives hydroxyl radical concentrations as a function both of ozone concentration and the main characteristics of the water to be treated (pH, TOC, alkalinity). Another semi-empirical formula links ozone consumption to the same characteristics.  相似文献   


6.
During drinking-water treatment, ozone used as a preoxidant and chlorine required for final disinfection, lead to competing chemical reactions, in the case of raw water containing both organic compounds and inorganic salts (such as bromides and ammonia).

The study of the interactions between those reactants has been made according to the following main topics :

As for THM formation, experiments conducted on simple organic compounds or on natural fulvic acids show important decreases in THM or TCAA formation after ozonation. It may be noticed, however, that the ozonation of surface waters may induce the formation of haloform precursors, usually with a low level of reactivity.

In water supplies containing bromide ions, oxidation of the latter through hypobromous acid may take place during the ozonation stage. Failing preozonation treatment, hypobromous acid is generated very rapidly during chlorination, thus inducing the formation of chloro- brominated organic compounds.

During the ozonation of fulvic acid solutions, the presence of small amounts of bicarbonate was found to improve precursor removal significantly.

It can be concluded that the partial analogy of the action of ozone or chlorine on aromatic structures, whether simple or complex (such as humic and fulvic acids), seems to indicate that the consequence of preozonation is the destruction, at least in part, of the most reactive sites for THM production, thus leading to a decrease of the volatile organochlorinated compounds formed during the post-chlorination. However, some ozonation products of natural waters are THM precursors, though of low reactivity. Then, in the presence of bromide ions, the formation of volatile organobrominated compounds may be observed during ozonation.  相似文献   


7.
The efficiency of ozonation and advanced oxidation processes such as ozone/UV, ozone/H2O2 and H2O2/UV was assessed for chlorinated hydrocarbons using a closed batch-type system. 1,1-Dichloropropene (DCPE), trichloroethylene (TCE), 1-chloropentane (CPA), and 1,2-dichloroethane (DCA) were used as model compounds.

The direct reaction between substrates and ozone predominated at lower pH, which resulted in the efficient oxidation of the olefin, DCPE. At higher pH, ozonation resulted in more efficient oxidation of the chlorinated alkanes, with a corresponding decrease in the efficiency of DCPE oxidation. Consistent results were observed for ozone/H2O2 and ozone/UV treatment. Due to slow UV-induced decomposition of H2O2, the process using H2O2/UV (254 nm) resulted in very slow oxidation of all four compounds.

The total ozone requirement to achieve a given degree of elimination (to 37% of the original concentration), δ0.37, was used to assess the combined effects of the direct and indirect reactions for different types of waters.  相似文献   


8.
In the water potabilization plant of Turin city (Italy), the oxidation process is carried out with ozone. Due to its well-known insufficient performance, it is necessary to add alternative oxidants (hypochlorite ion and chlorine dioxide). In this paper, we discuss the formation of linear carbonyl groups during surface water treatment in Turin.

The results obtained in the field confirm the synthesis of some aliphatic carbonyl compounds of low molecular weight. This phenomenon happens preeminently during the ozone disinfection process and, secondarily, during the other disinfection processes.

Experimental results show that, in this last event, chlorine reacts with organic substances, and in a second moment, after organics consumption, if chlorine is still in a sufficient concentration, oxidizing them.  相似文献   


9.
The photolysis of ozone and formation of hydrogen peroxide were investigated in solution of pH 2–7, in a 200 cm3 photoreactor in the incident photon flow range 9.6 x 10?8 - 4.2 x 10?7 einstein s?1. The quantum yield of the primary photochemical reactions was measured in a direct way by suppressing the secondary radical reactions. The determined quantum yields of the photo-decompositions of ozone and hydrogen peroxide were 0.42 ± 0.042 ± 0.04 and 0.49 ± 0.04, respectively.

A correct mathematical treatment is given for calculation of the light absorption of the individual components of a multi-absorbent reaction mixture.

On the basis of the literature data and die present results, a probable chemical and reaction kinetic model was proposed to characterize the investigated reaction systems. Reaction kinetic simulations demonstrated that the model predicts a good fit to the measured data with the preferred literature rate constants, except that for the HO3 radical decomposition reaction. A reasonable reduction of this rate coefficient value is in accordance with the latest published results.  相似文献   


10.
Experimental work on a laboratory recirculating apparatus, for the simulation of a cooling water system has yielded information on the effectiveness of ozone as a biocide for biofouling control. Biofilms were developed within glass tubes of the simulated cooling water system using filtered mainswater and Pseudomonas fluorescens as the test bacteria. A summary of the results obtained is presented and an interpretation of these results relating to the full-scale application of ozone is provided.

Ozonated water was produced using a contact system specifically designed for these tests by Ozotech Ltd. Ozone residual concentrations in the order of 0.1 mg/L were found to be capable of removing 80-99% of the biofilm in single applications. However, effectiveness of ozone was dependent on morphology, thickness and age of the biofilms. Intermittent application of ozone, using residual concentrations < 0.1 mg/L, was found to be capable of weakening the biofilm, but a minimum period of 3-h was required for effective control.

The fluid velocity was found to affect the rate and amount of biofilm removed. The effects of fluid velocities in the range 0.5-2.5 m/sec were examined. In general, the higher the velocity the greater the initial rate of removal and the percentage of the biofilm removed; this suggested that ozone action was mass transfer dependent.

The effect of ozone on bacterial cell structure was investigated using scanning electron microscopy techniques. Changes in cell structure were revealed after contact with ozone and residuals above 0.4 mg/L were required for 100% kill of bacterial suspensions.

In conclusion, the effectiveness of ozone for full-scale application will vary depending on the morphology of the biofilm, the velocity of the fluid and the ozone dose applied. An ozone dosing regime for commercial application is suggested.  相似文献   


11.
The objective of this study was to determine a suitable treatment method for variable waters from a forest industry landfill site. The main target was to find out the impact of different chemical treatments on the composition and biodegradability of those waters. Earlier studies have shown that biological treatment alone is not a suitable treatment method for these waters. That is why ozonation, ozonation+hydrogen peroxide and hydrogen peroxide treatment were studied in a laboratory scale. The ozonated waters were also biologically post-treated.

All the methods studied were able to degrade a part of the organic compounds and convert them into a more biodegradable form. Also the BOD/COD -ratio increased significantly. The removal of organic compounds by ozonation was 30 - 50 %. Hydrogen peroxide addition did not improve the degradation. The combination of pre-ozonation and biological post-treatment gave a total TOC removal between 50 - 95 %.  相似文献   


12.
The two corona discharge ozone swimming pool water treatment systems installed in the Peck Aquatic Center in Milwaukee, WI now have been in continuous operation since September, 1987. The two pools are part of the Karl Jewish Campus Facility of the Harold and Judy Sampson Campus of the Milwaukee Jewish Community Center.

The operation of these water treatment systems has shown that safe and high quality pool water is obtained reliably and economically. One pool (Main Pool) is of Olympic size, the other (Learner pool) is designed especially for use by children. Both pools utilize a full corona discharge ozone water treatment system. They were the first ozone systems in the U.S. to be built for public pools using the process of ozonation, flocculation, filtration, ozone removal and residual chlorination.

An extensive testing program was initiated in cooperation with the Wisconsin Department of Health. The bacteriological water quality from these swimming pools was in compliance with Wisconsin State Health Regulations and the German DIN Standard 19,643.

The first year of operation of the Peck Aquatic Center has shown that the corona discharge ozone pool water treatment process can:

1) Operate reliably in a public swimming pool environment without the need for highly or special operator qualifications.

2) Produce continuously bacteria- and virus-free pool water without the harmful and unpleasant effects of chlorine.

3) Creates a user constituency group praising and promoting the use of “minimal chlorine swimming” in the community.  相似文献   


13.
Proposed uses of ozone for stand-alone cooling water treatment raise critical questions as to what happens chemically. These questions are of more significance to industrial cooling water systems, which typically have higher temperatures and cooling ranges than do comfort cooling systems. When applying ozone to cooling waters, it is very important for the user to understand many fundamental aspects of ozone chemistry. For example, when ozone is added at water pH levels often encountered in cooling waters (≥ 8), it decomposes to form hydroxyl free radicals, which are stronger oxidizing agents than molecular ozone itself, but of microsecond half-life, and therefore are poor disinfectants. The presence of bicarbonate alkalinity, hardness, naturally occurring organics, bromide ion, and effects of pH levels on water quality parameters and molecular ozone, have pronounced effects on chemical reactions which occur when ozone is added to cooling waters. The authors review the fundamental chemistries involved with ozone in water, discuss the effects of water constituents present or expected to be present in recycling cooling waters, relate these aspects to biocidal efficacy of ozone treatment, and explore possible mechanisms for scale and corrosion control in cooling systems by ozone.

Recommended data needs will be discussed, particularly because currently published studies do not contain these data. For example, one explanation for the fact that low levels of applied ozone provide effective biofouling control throughout a cooling tower system in one case but not another may reside in the concentration of bromide ion in the water being ozonized. With bromide ion present, ozone quickly produces hypobromous acid, which is a much more stable biocide than is molecular ozone.  相似文献   


14.
This paper presents results from a water treatment pilot testing program in Winnipeg, Canada (pop. 650,000) which evaluated a DAF/ozone/deep bed filtration process. As part of the testing program, biological filtration using GAC and anthracite media was assessed for the removal of ozone DBPs and background chlorine DBPs (due to upstream chlorination of the source water). The results were used to evaluate the effectiveness of biological filtration for DBP removal.

High filtration rates were tested in this study. The 2.1m deep filters were run at a hydraulic loading rate (HLR) of 35 m/h with an empty bed contact time (EBCT) of only 3.6 minutes.

The important findings of this work are

?The high-rate biologically active carbon (BAC) filters met the objective of controlling ozone DBPs. These results confirm that high rate, low EBCT filters can provide significant biodegradation. Anthracite biofilters provided significantly less removal of ozone DBPs.

?The high rate BAC filters showed significant reduction of background HAAs. BAC reduced the background HAAs to below the long-term target of 30 μg/L. Anthracite biofilters did not exhibit HAA removal.

?Biological filtration with either media was ineffective for background THM removal. The long-term target of 40 μg/L could not be achieved without GAC adsorption.  相似文献   


15.
Some surface waters having high color or organic contents are treated with chlorine and produce undesirable chlorinated derivatives.

During tests conducted on a pilot plant scale, it was possible to demonstrate the effect of preozonation and filtration through granulated activated carbon (GAC). Unlike chlorine, ozone does not react with ammonia in water. Laboratory studies have shown that ozone acts upon certain nitrogenous organics ofthe water resulting in an undesirable excessive consumption of chlorine. On the contrary, in the pilot plant, the preozonation treatment produced a decrease in the chlorine demand of the waters.  相似文献   


16.
In the Netherlands many water supply companies are upgrading their surface water treatment plants in order to guarantee the water supply and water quality in the coming years. The Water Supply Company North West Brabant (WNWB) has plans to upgrade their treatment plant at Zevenbergen. In the retrofit plant chlorination will be abandoned and probably ozonation will be the major barrier against microorganisms. Pesticide concentrations will be decreased by three barriers: storage, ozonation and activated carbon filtration.

If the ozone dosage is restricted just to reach the required disinfection level at pH 7.2, ozonation is a poor barrier against pesticides. Out of 23 selected pesticides, only 6 were effectively degraded: dimethoate, chlortoluron, diuron, isoproturon, metoxuron and vinclozolin (O3/DOC = 0.55 g/g). Application of an (O3/DOC ratio of 1.0 g/g results in an effective barrier for roughly 50% of the tested pesticides (also for diazinon, parathion-methyl, linuron, methabenzthiazuron, metobromuron, MCPA and MCPP). Pesticides were degraded more effectively at high pH and high temperature.

For additional degradation of high concentrations of persistent pesticides, advanced oxidation may be applied. Atrazine, propazine, simazine, chlor-fenvinphos, tetrachlorvinphos, 2,4-D, 2,4-DP and 2,4,5-T were degraded by O3/DOC = 1.4 g/g and H2O2/O3 = 0.5 g/g. Dicamba and dikegulac were most persistent. pH has a minor effect on the degradation of pesticides by advanced oxidation. Higher hydrogen peroxide dosages showed no improvement in degradation. After ozonation and advanced oxidation, about 50% of totally reacted atrazine and propazine was converted into desethylatrazine. No desisopropylatrazine formation was observed.  相似文献   


17.
Experimental studies were carried out on the removal of five species of aromatic nitro hydrocarbons by ozonation. Ultraviolet spectrograms with distinct absorption peaks were plotted for each of them. It has been found that the absorbances of aqueous solutions containing the single compounds mentioned above increase to different extents at the wave lengths ranging from 200 to 230 nanometers with increase of ozone dosages. This is ascribed to the nitrite ions splitting out of the benzene rings and being further oxidized to nitrate ions by ozonation.

It has been indicated that the removal of the five species of aromatic nitro compounds by ozonation can well be expressed mathematically by first order reaction equations. Besides, the reaction constants and half-life periods for various species of the tested nitro compounds were calculated at different temperatures and pH.

An ozonation effect index (OI) was developed in the study to express the degree of degradation of substrates by ozonation, by means of which the five aromatic nitro hydrocarbons were compared with each other and finally ranked in the following order from greatest to smallest degrees of degradation:

p-nitroaniline > nitrobenzene > p-dinitrobenzene > p-nitrotoluene > m-dinitrobenzene

It has also found that the CODm/M ratio increases with ozone doses. This means that some easily degradable intermediates are produced, and increase in concentration with increase of ozone dose in the ozonation process.

The mechanisms of removing the five aromatic nitro hydrocarbons are discussed from the viewpoint of orienting effects of substituent groups on the aromatic rings.  相似文献   


18.
The purpose of this study was to point out processes that can provide triazine oxidation via hydroxyl radical production in a water treatment line. We focus our attention on:

- oxido-flocculation, using Fe2+, H2O2

- inter-oxidation, using O3, H2O2 and eventually an heterogeneous catalyst.

- disinfection, using UV, O3 and H2O2 combinations.

Results show that triazines can be removed by all these processes with different efficiencies. At full scale, the O3/H2O2 process presents the best performances from an economical and technical point of view.  相似文献   


19.
This paper reflects an investigation of the feasibility of photochemical generation of ozone by irradiating gases containing oxygen with Hg lamps of the highest performance emitting the 185 nm line. Besides the expected photostationary equilibrium, determining factors for practical yields in ozone generation by the 185 nm wavelength are : the reactor and gas temperature, the reactor geometry, and the gas composition, as well as the pressure.

Further developments are expected in the field of lamp construction and also improvement of reactor geometry. A better knowledge of the aging of the lamps is required, as well as of the photochemical reactions of oxygen in the technologies applied.

Systems presently available are most promising for application on small scale or in areas of public water distribution which have no developed structure.

  相似文献   


20.
A kinetic model has been developed, taking into account both decomposition of ozone molecules and interactions between ozone and hydrogen peroxide for formation of hydroxyl radical and subsequent reactions. Experiments were carried out at 25°C in the pH range of 3 to 13, indicating that the depletion rate of ozone increases with the concentrations of ozone, hydrogen peroxide and hydroxyl ion, as predicted by the kinetic model. Adverse scavenging reactions, however, also play significant roles at sufficient concentration ratios of hydrogen peroxide to ozone and high concentrations of hydroxyl ion in reducing the depletion rate. Results of this research suggest, that it is most desirable to conduct the peroxone oxidation for pollutant destruction by the hydroxyl radical reaction in alkaline solutions of pH below 11, while maintaining about the same concentration of ozone and hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号