首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (O3), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the transient steady-state concentration of hydroxyl radicals (√OH). A new parameter, Rct , representing the ratio of the √OH-exposure to the O3-exposure was calculated as a function of reaction time. For most waters tested, including pH-buffered model systems and natural waters, Rct was a constant value for the majority of the reaction. Therefore, Rct corresponds to the ratio of the √OH concentration to the O3 concentration in a given water (i.e. Rct = [√OH]/[O3]). For a given water source, the degradation of a micropollutant (e.g. atrazine) via O3 and √OH reaction pathways can be predicted by the O3 reaction kinetics and Rct .  相似文献   

2.
The oxidation of the herbicide atrazine by advanced oxidation processes (AOP) has been studied. The experiments were carried out in a tubular photoreactor, 2.5 L capacity, capable of providing good contact between the liquid and gas reactants. The decomposition rate of atrazine was determined at different pH using UV radiation, Hydrogen Peroxide, Ozone, Ozone/UV, Ozone/H2O2, H2O2/UV and Ozone/H2O2/UV processes. The effect of three different pH values was studied (4.7, 6.8, 11.7).  相似文献   

3.
The decomposition of ozone in wastewater is observed starting 350 milliseconds after ozone addition. It seems not to be controlled by the autocatalytic chain reaction, but rather by direct reactions with reactive moieties of the dissolved organic matter (DOM). A larger ozone dose increases ozone consumption prior to 350 milliseconds but decreases the rate of ozone decomposition later on; this effect is predicted by a second-order kinetic model. Transferred Ozone Dose (TOD) is poorly correlated with ozone exposure (= ∫[O3]dt) indicating that TOD is not a suitable parameter for the prediction of disinfection or oxidation in wastewater. HO? concentrations (> 10?10 M) and Rct (=∫[HO?]dt/∫[O3]dt > 10?6) are larger than in most advanced oxidation processes (AOP) in natural waters, but rapidly decrease over time. Rct also decreases with increasing pre-ozonation doses. An increase in pH accelerates ozone decomposition and HO? generation; this effect is predicted by a kinetic model taking into account deprotonation of reactive moieties of the DOM. DOC emerges as a crucial water quality parameter that might be of use to normalize ozone doses when comparing ozonation in different wastewaters. A rapid drop of absorbance in the water matrix—with a maximum between 255–285 nm—is noticeable in the first 350 milliseconds and is directly proportional to ozone consumption. The rate of absorbance decrease at 285 nm is first order with respect to ozone concentration. A kinetic model is introduced to explore ozone decomposition induced by distributions of reactive moieties at sub-stoichiometric ozone concentrations. The model helps visualize and comprehend the operationally-defined “instantaneous ozone demand” observed during ozone batch experiments with DOM-containing waters.  相似文献   

4.
Advanced oxidation processes are defined as those which involve the generation of hydroxyl radicals in sufficient quantity to affect water purification. The theoretical and (practical yield of OH from O3 at high pH, 03/H202, O3/UV and H2O2/UV systems is reviewed. New data is presented which illustrates the importance of direct photolysis in the O3/UV process, the effect of the H202:03 ratio in the O3/H2O2 process, and the impact of the low extinction coefficient of H2O2 in the H202/UV process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号