首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The combined absorption of NO and SO2 into the Fe(II)-ethylenediamineteraacetate(EDTA) solution has been realized. Activated carbon is used to catalyze the reduction of FeIII-EDTA to FeII-EDTA to maintain the ability to remove NO with the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO2 dissolved into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, pH value, temperature of absorption and regeneration, O2 partial pressure, sulfite/bisulfite and chloride concentration on the combined elimination of NO and SO2 with FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon. The experimental results indicate that NO removal efficiency increases with activated carbon mass. There is an optimum pH of 7.5 for this process. The NO removal efficiency increases with the liquid flow rate but it is not necessary to increase the liquid flow rate beyond 25 ml min?1. The NO removal efficiency decreases with the absorption temperature as the temperature is over 35 °C. The Fe2+ regeneration rate may be speeded up with temperature. The NO removal efficiency decreases with O2 partial pressure in the gas streams. The NO removal efficiency is enhanced with the sulfite/bisulfite concentration. Chloride does not affect the NO removal. Ca(OH)2 and MgO slurries have little influence on NO removal. High NO and SO2 removal efficiencies can be maintained at a high level for a long period of time with this heterogeneous catalytic process.  相似文献   

2.
The aim of this study was to investigate the effectiveness of chemical oxidation by applying ozonation, combination of ozone and hydrogen peroxide and Fenton's processes for decolorization and residual chemical oxygen demand (COD) removal of biologically pretreated pulp and paper industry effluents. The batch tests were performed to determine the optimum operating conditions including pH, O3, H2O2, and Fe2+ dosages. H2O2 addition reduced the reaction times for the same ozone dosages; however combinations of ozone/hydrogen peroxide were only faintly more effective than ozone alone for COD and color removals. In the Fenton‘s oxidation studies, the removal efficiencies of COD, color and ultraviolet absorbance at 254 nm (UV254) for biologically treated pulp and paper industry effluents were found to be about 83, 95, and 89%, respectively. Experimental studies indicated that Fenton oxidation was a more effective process for the reduction of COD, color, and UV254when compared to ozonation and ozone/hydrogen peroxide combination. Fenton oxidation was found to have less operating cost for color removal from wastewater per cubic meter than the cost for ozone and ozone/hydrogen peroxide applications.  相似文献   

3.
To obtain an idea of the magnitudes of the ozone loss rates rO3 in practical applications of ozone, an overall determination of the ozone decay profiles and rate constants was carried out in four different systems. These systems resemble different conditions for industrial application of ozone and the peroxone process, such as in the field of micro electronics, drinking water purification, disinfection, etc. Therefore, the behavior of ozone was monitored in the pH range from 4.5 to 9.0, in pure water and phosphate buffered systems in absence and presence of small amounts of hydrogen peroxide (10?7 M to 10?5 M H2O2). First the reproducibility of the ozone decay profiles was checked and from the various kinetic formalism tests, the reaction order 1.5 for the ozone decay rate has been selected. As expected, hydrogen peroxide increases the decay rates. In pure systems, added concentrations of 10?7M H2O2 already cause a remarkable acceleration of the ozone decay in the acidic and neutral pH range compared to the pure systems. However for alkaline pH conditions almost no effect of the low hydrogen peroxide concentrations was noticed. Contradictory to literature data, in the absence of hydrogen peroxide, ozone displays faster decays in the buffered systems of low ionic strength of 0.02 compared to pure water. This acceleration is more pronounced for acidic pH conditions. Low concentrations of phosphate may indeed accelerate the ozone decay in the presence of organic matter. Adding H2O2 concentrations below 10?5M to phosphate buffered solutions has a negligible effect on the ozone decay rate compared with pure water systems, except for pH 7. It appears that phosphate masks the effect of hydrogen peroxide below 10?5 M as tested here. Thus the application of AOP's by adding low concentrations of hydrogen peroxide is not well feasible in the presence of phosphate buffers in pure water systems.  相似文献   

4.
Performance of ozonation and an ozone/hydrogen peroxide process under a new concept centering on ozonation and/or ozone/hydrogen peroxide processes in sewage treatment processes comprising only physical and chemical processes are discussed, with focus on the removal of matrix organic compounds and emerging contaminants. Matrix organic compounds of filtrated primary sewage effluents were removed to as low as 3.2 mgC/L in the ozone/hydrogen peroxide process at an ozone consumption of around 400 mg/L. Linear relationships between ozone consumption and removal amounts of organic compounds were observed, in which the amounts of ozone required to remove 1 mg of organic carbon were 9.5 and 8.3 mg (2.4 and 2.1 mol-O3/mol-C) in ozonation and the ozone/hydrogen peroxide process, respectively. Ratios of hydroxyl radical exposure to ozone exposure were in the order of 10–9 to 10–8 for ozonation and 10–7 to 10–6 for the ozone/hydrogen peroxide process. Experiments and a kinetic evaluation showed that ozonation and/or the ozone/hydrogen peroxide process have high elimination capability for emerging contaminants, even in primary sewage effluent with the thorough removal of matrix organic compounds. Newly found reaction phenomena, the temporal increase and decrease of dissolved ozone and accumulation of hydrogen peroxide in the early stage of oxidation with the continuous feeding of hydrogen peroxide, were presented. Possible reaction mechanisms are also discussed.  相似文献   

5.
Pistachio consumption is associated with reductions in serum cholesterol and oxidative stress due to their constituents of unsaturated fats, phytosterols, fiber, and antioxidants. Bleaching has been applied to whiten nut shells for antifungal and cosmetic purposes. However, the impact of bleaching on nutritional quality and safety of pistachios remains to be examined. In this study, we investigated whether bleaching would increase malondialdehyde (MDA) or 7‐keto‐sitosterol and decrease phytosterols in pistachio oil, as well as cause cytotoxicity of modeled Hepa1c1c7 cells. Bleaching increased MDA by more than 32% from 0.23 µg/g in raw oil, with the largest increase noted with the bleach containing H2O2 and Fe2+ (P ≤ 0.05). Bleached pistachio oil had larger than 12.6% decrease in β‐sitosterol and total phytosterols as compared to the raw oil (P ≤ 0.05). Bleaching with Fe2+ significantly increase 7‐keto‐sitosterol compared to bleaching alone. Hepatic cell viability was decreased the most by the oil of the pistachios treated with bleach containing Fe2+ (P ≤ 0.05), and lactate dehydrogenase activity in medium was elevated by >18‐folds (P ≤ 0.05). Compared to natural pistachios, the bleaching treatment had detrimental effects on nutritional quality and expected health benefits of pistachios by increasing lipid peroxidation, decreasing phytosterol content, and causing cytotoxicity. Practical applications: Bleaching has been applied to whiten the nut shell for antifungal and cosmetic purposes. However, the results of this study indicate that bleaching treatment has a detrimental impact on nutritional quality and expected health benefits of pistachios. Particularly, treatment with a bleach formula with hydrogen peroxide and transit metals increases formation of lipid peroxidation products and decreases phytosterol content. The resulting pistachio oil causes cell toxicity. Thus, bleaching practice for whitening pistachios is strongly discouraged.  相似文献   

6.
BACKGROUND: The ongoing emission of nitric oxide (NO) is a serious persistent environmental problem, because it contributes to atmospheric ozone destruction and global warming. A novel and effective system was developed for the complete treatment of NO from flue gases. The system features NO absorption by FeII(EDTA) and biological denitrification in a rotating drum biofilter (RDB). RESULTS: After 100 mg L?1 FeII(EDTA) was added to the nutrient solution, the results show that the NO removal efficiency was improved from 70.56% to 80.15%, the optimal temperature improved from 32.5 °C to 40.5 °C, and the pH improved from 7.5 to 8.0–8.3. A maximum NO removal efficiency of 96.5% was achieved when 500 mg L?1 FeII(EDTA) was used in the nutrient solution. CONCLUSION: This experiment demonstrates that FeII(EDTA) could not only improve the mass transfer efficiency of NO from gas to liquid, but also serve as an electron donor for the biological reduction of NO to N2. The new integrated treatment system seemed to be a promising alternative for the complete treatment of NO from flue gases. © 2012 Society of Chemical Industry  相似文献   

7.
Hydrogen peroxide can be catalysed to bleach cotton fibres at a temperature of 70 °C by incorporating the copper‐based catalyst [Cu(TPMA)Cl]ClO4·1/2H2O in the bleaching solution. The effects of pH, temperature, and concentration of catalyst and hydrogen peroxide on bleaching effectiveness were evaluated. The effects of other transition metal complexes of tris(2‐pyridylmethyl)amine were also examined. The bleaching mechanism was investigated by studying the active species. The results showed that a satisfactory whiteness index could be obtained at low temperature with the copper‐based catalyst, and it also had a competitive advantage in protecting cellulose from severe chemical damage. Cu(i )TPMA(OOH)? was the active species in bleaching.  相似文献   

8.
Phenol has been oxidised with aqueous hydrogen peroxide under a wide variety of conditions and yields of the catechol and hydroquinone products recorded. Catalysts tested included a number of transition metal and related ions of which only Cu+, Cu2+, Cr3+, WO42-, Hg2+, Fe2+, and Fe3+ gave any degree of success. Extensive tests with ferric ion established 2.5:1000, Fe3+:phenol mole ratio as being the optimum catalytic range. Temperatures lower than 30°C gave relatively high catechol:hydroquinone product ratios, about 1.9:1, but lowered the yields of dihydroxybenzenes to about 70% of theory. From experiments conducted over the pH range of 1 to 8 the optimum pH for high yield reactions was found to be 2 to 3. Operating at a hydrogen peroxide:phenol mole ratio of 0.30:1.0 gave the highest catechol:hydroquinone product ratios, 1.6:1.0. The catechol:hydroquinone ratio produced decreased as the ratio of reacting peroxide to phenol was increased. Optimised conditions gave dihydroxybenzene yields of 84 and 53% on phenol and hydrogen peroxide respectively, and ratios of 1.5:1 and 2.0:1, catechol:hydroquinone. A research stage economic summary from averaged pairs of experimental results gave a value added of $3.19 (technical grade products) or $8.47 (pure grades) per kg of catechol on a raw material cost base of $2.87, as two among four calculated cost evaluation scenarios.  相似文献   

9.
In the present study, Fenton and sono‐Fenton processes were applied to the oxidative decolorisation of synthetic textile wastewater including CI Reactive Orange 127 and polyvinyl alcohol. Process optimisation [pH, ferrous ion (Fe2+) and hydrogen peroxide (H2O2)], kinetic studies and their comparison were carried out for both of the processes. The sono‐Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35‐kHz frequency and 80 W power. The optimum conditions were determined as [Fe2+] = 20 mg l?1, [H2O2] = 15 mg l?1 and pH = 3 for the Fenton process and [Fe2+] = 25 mg l?1, [H2O2] = 5 mg l?1 and pH = 3 for the sono‐Fenton process. The colour removals were 89.9% and 91.8% by the Fenton and sono‐Fenton processes, respectively. The highest decolorisation was achieved by the sono‐Fenton process because of the production of some oxidising agents as a result of sonication. Consequently, ultrasonic irradiation in the sono‐Fenton process slightly increased the colour removal to 91.8%, while decreasing the hydrogen peroxide dosage to one‐third of that of the Fenton process.  相似文献   

10.
The kinetics of the dependence of pH, oxalate, and hydrogen peroxide concentrations on the degradation performance of the herbicide 2,4‐dichlorophenoxyethanoic acid (2,4‐D) was studied in a novel ferrous oxalate/H2O2/UV system. The formation and destruction of the primary intermediate, 2,4‐dichlorophenol (2,4‐DCP), was also monitored in the study. A rate enhancement of about 2.9 times was found when 1.2 mM of oxalate was added to the conventional Fe2+/H2O2/UV process. However, excess oxalate suppressed the reaction due to the scavenging and light attenuation effects. The 2,4‐D transformation at a lower initial pH was faster than that at a higher pH, and the different reaction mechanisms were investigated. In addition to the decay rates, the yield of the intermediate 2,4‐DCP was also affected by the initial solution pH. The increment of hydrogen peroxide concentration did not increase the initial decay rates of 2,4‐D, yet it improved the overall removal of 2,4‐D and elevated the formation of the corresponding intermediate (2,4‐DCP). Copyright © 2004 Society of Chemical Industry  相似文献   

11.
氨水沉淀法由含钛滤液提取二氧化钛   总被引:1,自引:0,他引:1       下载免费PDF全文
张悦  王思佳  薛向欣 《化工学报》2012,63(10):3345-3349
以含钛高炉渣为原料,经硫酸铵熔融法得到含钛滤液,然后以氨水为沉淀剂,控制pH值使钛水解,水解产物经600℃煅烧2 h得到二氧化钛。考察了螯合剂的加入量、溶液pH值和反应时间对钛沉淀率的影响,实验结果表明:反应过程中铁与钛发生共沉淀,造成二氧化钛产物中的铁含量过高。EDTA几乎完全抑制了铁的沉淀,明显降低了二氧化钛产物的全铁含量;2-羟基丙烷-1,2,3-三羧酸的加入降低了产物中二氧化硅的含量,提高了产物中二氧化钛的含量。当2-羟基丙烷-1,2,3-三羧酸与硅的摩尔比为1,EDTA与铁的摩尔比为3,pH值为2.0,反应时间为90 min时产物中二氧化钛的含量为96.35%。  相似文献   

12.
In this paper, the removal of phenol from simulated wastewater was studied using gas–liquid fluidized bed with the Fenton reagent. The factors that affect the removal rate of phenol were investigated, including the initial concentrations of hydrogen peroxide [H2O2] and [Fe2+], the molar ratio of [Fe2+]/[H2O2], pH value, temperatures, reaction time, and the ventilation volume. It was found that the optimal operating conditions existed as: [H2O2] = 12 mmol/L, [H2O2]/[Fe2+] = 4:1, pH = 4, T = 60 °C, reaction time of 30 min, and a ventilation volume of 0.12 m3/h. Under these conditions, the phenol removal rate of about 96% was obtained.  相似文献   

13.
The applicability of a sequential process of ozonation and ozone/hydrogen peroxide process for the removal of soluble organic compounds from a pre-coagulated municipal sewage was examined. 6–25% of initial T-CODCr was removed at the early stage of ozonation before the ratio of consumed ozone to removed T-CODCr dramatically increased. Until dissolved ozone was detected, 0.3 mgO3/mgTOC0 (Initial TOC) of ozone was consumed. When an ozone/hydrogen peroxide process was applied, additional CODCr was removed. And we elucidated that two following findings are important for the better performance of ozone/hydrogen peroxide process; those are to remove readily reactive organic compounds with ozone before the application of ozone/hydrogen peroxide process and to avoid the excess addition of hydrogen peroxide. Based on these two findings, we proposed a sequential process of ozonation and multi-stage ozone/hydrogen peroxide process and the appropriate addition of hydrogen peroxide. T-CODCr, TOC and ATU-BOD5 were reduced to less than 7 mg/L, 6 mgC/L and 5 mg/L, respectively after total treatment time of 79 min. Furthermore, we discussed the transformation of organic compounds and the removal of organic compounds. The removal amount of CODCr and UV254 had good linear relationship until the removal amounts of CODCr and UV254 were 30 mg/L and 0.11 cm?1, respectively. Therefore UV254 would be useful for an indicator for CODCr removal at the beginning of the treatment. The accumulation of carboxylic acids (formic acid, acetic acid and oxalic acid) was observed. The ratio of carbon concentration of carboxylic acids to TOC remaining was getting higher and reached around 0.5 finally. Removal of TOC was observed with the accumulation of carboxylic acids. When unknown organic compounds (organic compounds except for carboxylic acids) were oxidized, 70% was apparently removed as carbon dioxide and 30% was accumulated as carboxylic acids. A portion of biodegradable organic compounds to whole organic compounds was enhanced as shown by the increase ratio of BOD/CODCr.  相似文献   

14.
This study examines the influence of ozone on a TMP pulp of tamarack in an independent bleaching stage and as a pre-treatment for hydrogen peroxide bleaching. Ozone charges of up to 6% were used on dry pulp. The results were compared to those obtained with 1% H2O2 bleaching. Experiments were conducted at 23°C and 55°C, and pH varied from 3.5 to 10.5. The best bleaching results were reached with acidic pH, with interesting behavior observed at an alkaline pH level. Ozone effectively attacks CO groups in lignin, but lacks the chemical selectivity and high reactivity required to become a good bleaching agent.  相似文献   

15.
This paper deals with experimental investigations related to removal of iron and manganese from simulated contaminated groundwater via ozone technology. Ozone as a powerful oxidizing agent, which was used in this study to oxidize iron and manganese converting ferrous ions (Fe2+) iron to ferric state (Fe3+) and (Mn2+) to (Mn4+) state, the oxidized salts will precipitate as ferric hydroxide and manganese oxide, that to reach the concentrations of these pollutants under their limit values in drinking water. The initial concentrations of (Fe2+) and (Mn2+) in synthetic water sample under study were 2.6 mg/l and 1 mg/l respectively. The effects of ozone dose concentration, operating temperature, and pH on the percentage removal of (Fe2+) and (Mn2+) have been discussed. For optimum removal of iron and manganese species the ozone dose has been noted as 3 mg/l at optimum temperature of 20 °C which improved removal of (Fe2+) and (Mn2+) to more than 96% and 83% respectively. The removal percentage of both metals was also affected by changing pH with the range of 5-12; where the maximum removal of iron and manganese was observed in pH (9-10). Experiments also studied the effects of coagulant type and bicarbonate concentration in raw water, as a result it was found that the optimum concentrations of coagulant was a mixture of 30 mg/l of aluminum sulfate with 10 mg/l of lime.  相似文献   

16.
The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4?/HPO42– buffers at constant ionic strength (0.1 M) and between 5 and 35 °C. A kinetic model for ozone decomposition is proposed considering the existence of two chemical subsystems, one accounting for direct ozone decomposition leading to hydrogen peroxide and the second one accounting for the reaction between the hydrogen peroxide with the ozone to give different radical species. The model explains the apparent reaction order respect of the ozone for the entire pH interval. The decomposition kinetics at pH 4.5, 6.1, and 9.0 is analyzed at different ionic strength and the results suggest that the phosphate ions do not act as a hydroxyl radical scavenger in the ozone decomposition mechanism.  相似文献   

17.
Manganese peroxidase produced by the white-rot fungus Bjerkandera sp. strain BOS55 was used for lignin oxidation and bleaching of eucalyptus oxygen-delignified kraft pulp. The optimization of the enzymatic stage and its implementation into an industrial chemical bleaching sequence were performed for the purpose of defining a new bleaching sequence. Parameters related to the selection and concentration of a chelating organic acid, Mn2+, and hydrogen peroxide concentrations were optimized and applied to evaluate the implementation of an enzymatic stage into a chemical sequence composed of chelator and hydrogen peroxide or hydrogen peroxide with oxygen pressure stages. The brightness, reduction of the κ number, and remaining manganese peroxidase activity were assessed in conventional and enzyme-based bleaching sequences. High International Organization for Standardization (ISO) brightness (83%) and parallel κ number reduction (5.5 points) were obtained with an enzymatic stage/chelator stage/hydrogen peroxide with oxygen pressure stage sequence under the best operational conditions: 33 μM Mn2+, oxalic acid, and 41.7 μM H2O2 added in pulses every 5 min for the enzymatic stage and a 2-h hydrogen peroxide with oxygen pressure stage at 588.4 kPa of oxygen pressure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Ozone and ozone/peroxide processes were evaluated for the removal of 1,4-dioxane from laboratory water and site groundwater. The effect of process parameters such as solution pH and dosage of peroxide was studied. Ozone alone was not very effective in removing 1,4-dioxane from water (≤ 20% removal). Enhanced oxidation of 1,4-dioxane was achieved by increasing the solution pH or by adding peroxide at neutral pH. Pseudo–first-order rate constants were calculated for the removal of 1,4-dioxane using ozone. Correlations were developed for the consumption of ozone per 1,4-dioxane removed. Acidic and neutral pH conditions resulted in higher consumption of ozone per dioxane removed. Basic solution pH and presence of hydrogen peroxide enhanced the dioxane removal, which resulted in lower consumption of ozone per dioxane removed. Following the lab study, ozonation was used for the remediation of site groundwater contaminated with 1,4-dioxane and chlorinated volatile organics. Presence of 5 mg/L of hydrogen peroxide during ozonation resulted in simultaneous removal of 1,4-dioxane and volatile organics from groundwater to target levels. For the AOP process, removal kinetics was approximately 50% slower in groundwater compared to the lab DI water.  相似文献   

19.
Fe-200 was synthesized through the calcination of iron powder at 200 °C for 30 min in air. On the basis of characterization by X-ray diffraction and X-ray photoelectron spectroscopy, Fe-200 had a core–shell structure, in which the surface layer was mainly composed of Fe2O3 with some FeOOH and FeO, and the core retained metallic iron. The kinetics and mechanism of the interfacial electron transfer on Fe-200 were investigated in detail for the photoassisted degradation of organic pollutants with H2O2. Under deoxygenated conditions in the dark, the generation of hydroxyl radicals in aqueous Fe-200 dispersion verified that galvanic cells existed at the interface of Fe0/iron oxide, indicating the electron transfer from Fe0 to Fe3+. Furthermore, the effects of hydrogen peroxide and different organic pollutants on the interfacial electron transfer were examined by the change rate of the Fe3+ concentration in the solution. The results indicated that hydrogen peroxide provided a driving force in the electron transfer from Fe2+ to Fe3+, while the degradation of organic pollutants increased the electron transfer at the interface of Fe0/iron oxide due to their reaction with OH.  相似文献   

20.
Ozonation of citric acid in water catalyzed by different ions from the first row of transition metals (Mn2+, Co2+, Ti4+, Fe2+, Cu2+, Ni2+ and Zn2+) was investigated at room temperature. The results showed that at pH=2, where the decomposition of citric acid is negligible by only ozone, the following order of efficiency of metallic ions for the decomposition of citric acid by ozone, and also for the TOC removal, was obtained: Mn2+ > Co2+ > Ti4+ > Fe2+. Cu2+, Ni2+ and Zn2+ showed negligible efficiency under the same experimental conditions. At pH=5.5, Mn2+ and Co2+ showed slightly higher efficiency than at pH=2 while Ti4+ and Fe2+ showed insignificant effect at this pH value. On the other hand, at pH=7 the investigated catalysts showed no obvious catalytic efficiency for the decomposition of citric acid by ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号