首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
A 1 V switched-capacitor (SC) bandpass sigma-delta (/spl Sigma//spl Delta/) modulator is realized using a high-speed switched-opamp (SO) technique with a sampling frequency of up to 50 MHz, which is improved ten times more than prior 1 V SO designs and comparable to the performance of the state-of-the-art SC circuits that operate at much higher supply voltages. On the system level, a fast-settling double-sampling SC biquadratic filter architecture is proposed to achieve high-speed operation. A low-voltage double-sampling finite-gain-compensation technique is employed to realize a high-resolution /spl Sigma//spl Delta/ modulator using only low-DC-gain opamps to maximize the speed and to reduce power dissipation. On the circuit level, a fast-switching methodology is proposed for the design of the switchable opamps to achieve a switching frequency up to 50 MHz. Implemented in a 0.35-/spl mu/m CMOS process (V/sub TP/=0.82 V and V/sub TN/=0.65 V) and at 1 V supply, the modulator achieves a measured peak signal-to-noise-and-distortion ratio (SNDR) of 42.3 dB at 10.7 MHz with a signal bandwidth of 200 kHz, while dissipating 12 mW and occupying a chip area of 1.3 mm/sup 2/.  相似文献   

2.
Experimental verification is given for the use of /spl Sigma//spl Delta/ modulation for high-temperature applications (/spl ges/approximately 150/spl deg/C) in a standard CMOS process. Switched-capacitor circuits are used to implement a second-order single-stage and a third-order 2-1 MASH /spl Sigma//spl Delta/ modulator with single-bit quantization. The two modulators have an oversampling ratio of 256 with an input signal bandwidth of 500 Hz. The modulators were fabricated in a 1.5-/spl mu/m standard CMOS technology. A fully differential signal path and near minimum sized switches are used to mitigate the effect of large junction-to-substrate leakage current present at high temperatures. Experimental results show both modulators are capable of over 14 bits of resolution at 225/spl deg/C and over 13 bits of resolution at 255/spl deg/C. Results show that the single-stage modulator is more resistant to high-temperature circuit impairment than is the MASH cascaded structure.  相似文献   

3.
We present a tool that starting from high-level specifications of switched-capacitor (SC) /spl Sigma//spl Delta/ modulators calculates optimum specifications for their building blocks and then optimum sizes for the block schematics. At both design levels, optimization is performed using statistical techniques to enable global design and innovative heuristics for increased computer efficiency as compared with conventional statistical optimization. The tool uses an equation-based approach at the modulator level, a simulation-based approach at the cell level, and incorporates an advanced /spl Sigma//spl Delta/ behavioral simulator for monitoring and design space exploration. We include measurements taken from two silicon prototypes: (1) a 16 b @ 16 kHz output rate second-order /spl Sigma//spl Delta/ modulator; and (2) a 17 b @ 40 kHz output rate fourth-order /spl Sigma//spl Delta/ modulator. Both use SC fully differential circuits and were designed using the proposed tool and manufactured in a 1.2 /spl mu/m CMOS double-metal double-poly technology.<>  相似文献   

4.
We present a 90-dB spurious-free dynamic range sigma-delta modulator (/spl Sigma//spl Delta/M) for asymmetric digital subscriber line applications (both ADSL and ADSL+), with up to a 4.4-MS/s digital output rate. It uses a cascade (MASH) multibit architecture and has been implemented in a 2.5-V supply, 0.25-/spl mu/m CMOS process with metal-insulator-metal capacitors. The prototypes feature 78-dB dynamic range (DR) in the 30-kHz to 2.2-MHz band (ADSL+) and 85-dB DR in the 30-kHz to 1.1-MHz band (ADSL). Integral and differential nonlinearity are within /spl plusmn/0.85 and /spl plusmn/0.80 LSB/sub 14 b/, respectively. The /spl Sigma//spl Delta/ modulator and its auxiliary blocks (clock phase and reference voltage generators, and I/O buffers) dissipate 65.8 mW. Only 55 mW are dissipated in the /spl Sigma//spl Delta/ modulator.  相似文献   

5.
The feasibility of a force-balance interface based on a second-order delta-sigma (/spl Delta//spl Sigma/) modulator for capacitive sensors has been analyzed in order to delimit the requirements to assure system stability for a given set of constraints related to the sensor-modulator system. A /spl Delta//spl Sigma/ modulator based on a switched-capacitor architecture with floating MOSFET capacitors has been implemented using a 0.7-/spl mu/m CMOS process. Nonlinear effects related to voltage dependence of the floating MOSFET capacitors have been avoided using a modulator architecture based on charge integrators. The behavior of the new proposed modulator has been measured experimentally and compared with an equivalent interface made with lineal capacitors. Similar results were obtained from both systems. In both circuits, the modulator resolution was better than 14 bits at a sample frequency of 250 kHz, and oversampling ratio of 256.  相似文献   

6.
Bandpass modulators sampling at high IFs (/spl sim/200 MHz) allow direct sampling of an IF signal, reducing analog hardware, and make it easier to realize completely software-programmable receivers. This paper presents the circuit design of and test results from a continuous-time tunable IF-sampling fourth-order bandpass /spl Delta//spl Sigma/ modulator implemented in InP HBT IC technology for use in a multimode digital receiver application. The bandpass /spl Delta//spl Sigma/ modulator is fabricated in AlInAs-GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (f/sub T/) of 130 GHz and a maximum frequency of oscillation (f/sub MAX/) of 130 GHz. The fourth-order bandpass /spl Delta//spl Sigma/ modulator consists of two bandpass resonators that can be tuned to optimize both wide-band and narrow-band operation. The IF is tunable from 140 to 210 MHz in this /spl Delta//spl Sigma/ modulator for use in multiple platform applications. Operating from /spl plusmn/5-V power supplies, the fabricated fourth-order /spl Delta//spl Sigma/ modulator sampling at 4 GSPS demonstrates stable behavior and achieves a signal-to-(noise + distortion) ratio (SNDR) of 78 dB at 1 MHz BW and 50 dB at 60 MHz BW. The average SNDR performance measured on over 250 parts is 72.5 dB at 1 MHz BW and 47.7 dB at 60 MHz BW.  相似文献   

7.
Entropy and the law of small numbers   总被引:1,自引:0,他引:1  
Two new information-theoretic methods are introduced for establishing Poisson approximation inequalities. First, using only elementary information-theoretic techniques it is shown that, when S/sub n/=/spl Sigma//sub i=1//sup n/X/sub i/ is the sum of the (possibly dependent) binary random variables X/sub 1/,X/sub 2/,...,X/sub n/, with E(X/sub i/)=p/sub i/ and E(S/sub n/)=/spl lambda/, then D(P(S/sub n/)/spl par/Po(/spl lambda/)) /spl les//spl Sigma//sub i=1//sup n/p/sub i//sup 2/+[/spl Sigma//sub i=1//sup n/H(X/sub i/)-H(X/sub 1/,X/sub 2/,...,X/sub n/)] where D(P(S/sub n/)/spl par/Po(/spl lambda/)) is the relative entropy between the distribution of S/sub n/ and the Poisson (/spl lambda/) distribution. The first term in this bound measures the individual smallness of the X/sub i/ and the second term measures their dependence. A general method is outlined for obtaining corresponding bounds when approximating the distribution of a sum of general discrete random variables by an infinitely divisible distribution. Second, in the particular case when the X/sub i/ are independent, the following sharper bound is established: D(P(S/sub n/)/spl par/Po(/spl lambda/))/spl les/1//spl lambda/ /spl Sigma//sub i=1//sup n/ ((p/sub i//sup 3/)/(1-p/sub i/)) and it is also generalized to the case when the X/sub i/ are general integer-valued random variables. Its proof is based on the derivation of a subadditivity property for a new discrete version of the Fisher information, and uses a recent logarithmic Sobolev inequality for the Poisson distribution.  相似文献   

8.
In this paper, we present a new continuous-time bandpass delta-sigma (/spl Delta//spl Sigma/) modulator architecture with mixer inside the feedback loop. The proposed bandpass /spl Delta//spl Sigma/ modulator is insensitive to time-delay jitter in the digital-to-analog conversion feedback pulse, unlike conventional continuous-time bandpass /spl Delta//spl Sigma/ modulators. The sampling frequency of the proposed /spl Delta//spl Sigma/ modulator can be less than the center frequency of the input narrow-band signal.  相似文献   

9.
A second-order multibit bandpass /spl Sigma//spl Delta/ modulator (BP/spl Sigma//spl Delta/M) used for the digitizing of AM/FM radio broadcasting signals at a 10.7-MHz IF is presented. The BP/spl Sigma//spl Delta/M is realized with switched-capacitor (SC) techniques and operates with a sampling frequency of 37.05 MHz. The input impulse current, required by the SC input branch, is minimized by the use of a switched buffer without deteriorating the overall system performance. The accuracy of the in-band noise shaping is ensured with two self-calibrating control systems. In a 0.18-/spl mu/m CMOS technology, the device die size is 1 mm/sup 2/ and the power consumption is 88 mW. In production, the BP/spl Sigma//spl Delta/M features at least 78-dB dynamic range and 72-dB peak SNR within a 200-kHz bandwidth (FM bandwidth). The intermodulation (IMD) is -65 dBc for two tones at -11 dBFS. The robustness of the aforementioned performance is demonstrated by the fact that it has been realized with the BP/spl Sigma//spl Delta/M embedded in the noisy on-chip environment of a complete mixed-signal FM receiver.  相似文献   

10.
A technique to reduce in-band tones in switch-mode power supplies is described. It takes advantage of the noise-shaping properties of the delta-sigma (/spl Delta//spl Sigma/) modulator to eliminate the spikes normally present in switching power supplies. A framework is introduced for comparing the conventional pulsewidth modulated (PWM) controller and this approach. A buck converter test circuit is constructed that is designed for a PWM controller clocked at 200 kHz and then substituted with a /spl Delta//spl Sigma/ modulator controller clocked at 400 kHz. The RMS noise power of the PWM controller is 14.9 mW compared to the rms noise power for the /spl Delta//spl Sigma/ modulator of 75.85 mW measured in a 2-MHz bandwidth. Although the /spl Delta//spl Sigma/ modulator rms noise power is higher, the noise floor is below the tones seen at the output of the PWM controller. A multibit /spl Delta//spl Sigma/ modulator controller, however, provides a significant reduction in the spectral output of the power supply. Values of 3.75 and 0.24 mW rms noise power are observed at the output of a 2-bit and 4-bit /spl Delta//spl Sigma/ modulator controller, respectively.  相似文献   

11.
The correlation between channel mobility gain (/spl Delta//spl mu/), linear drain-current gain (/spl Delta/I/sub dlin/), and saturation drain-current gain (/spl Delta/Idsat) of nanoscale strained CMOSFETs are reported. From the plots of /spl Delta/I/sub dlin/ versus /spl Delta/I/sub dsat/ and ballistic efficiency (Bsat,PSS), the ratio of source/drain parasitic resistance (R/sub SD,PSS/) to channel resistance (R/sub CH,PSS/) of strained CMOSFETs can be extracted. By plotting /spl Delta//spl mu/ versus /spl Delta/I/sub dlin/, the efficiency of /spl Delta//spl mu/ translated to /spl Delta/I/sub dlin/ is higher for strained pMOSFETs than strained nMOSFETs due to smaller RSD,PSS-to-RCH,PSS ratio of strained pMOSFETs. It suggests that to exploit strain benefits fully, the RSD,PSS reduction for strained nMOSFETs is vital, while for strained pMOSFETs the /spl Delta/I/sub dlin/-to-/spl Delta//spl mu/ sensitivity is maintained until R/sub SD,PSS/ becomes comparable to/or higher than R/sub CH,PSS/.  相似文献   

12.
A simplified form of the coupling coefficient C(/spl beta//sub p/, /spl beta//sub q/) resulting from a coupled mode theory analysis of wave propagation in a nonuniform medium is derived. It is found for most situations of interest that C(/spl beta//sub p/, /spl beta//sub q/) is proportional to 1/(/spl beta//sub p/-/spl beta//sub q/) and the power transfer between two modes is proportional to 1/(/spl beta//sub p/ - /spl beta//sub q/)/sup 4/. /spl beta//sub p/ and /spl beta//sub q/ are the two different modal propagation constants. For a dielectric rod C(/spl beta//sub p/, /spl beta//sub q/) is a simple line integral around the rod boundary. Approximate forms are presented for optical waveguides.  相似文献   

13.
This paper presents a high-level synthesis tool for /spl Sigma//spl Delta/ modulators (/spl Sigma//spl Delta/Ms) that combines an accurate SIMULINK-based time-domain behavioral simulator with a statistical optimization core. Three different circuit techniques for the modulator implementation are considered: switched-capacitor, switched-current and continuous-time. The behavioral models of these circuits, that take into account the most critical limiting factors, have been incorporated into the SIMULINK environment by using S-function blocks, which drastically increase the computational efficiency. The precision of these models has been validated by electrical simulations using HSPICE and experimental measurements from several silicon prototypes. The combination of high accuracy, short CPU time and interoperability of different circuit models together with the efficiency of the optimization engine makes the proposed tool an advantageous alternative for /spl Sigma//spl Delta/M synthesis. The implementation on the well-known MATLAB/SIMULINK platform brings numerous advantages in terms of data manipulation, processing capabilities, flexibility and simulation with other electronic subsystems. Moreover, this is the first tool dealing with the synthesis of /spl Sigma//spl Delta/Ms using both discrete-time and continuous-time circuit techniques.  相似文献   

14.
The theoretical error signal analysis of a sigma-delta (/spl Sigma//spl Delta/) modulator is a difficult problem due to the presence of a nonlinear operation (the amplitude quantization) in a feedback loop. In this paper, new deterministic knowledge on the transfer function of a /spl Sigma//spl Delta/ modulator is established, thanks to some recently observed properties of its state variables. For a large class of typical /spl Sigma//spl Delta/ modulators with constant inputs, the state variables appear to remain in a tile. We show what characteristics in a /spl Sigma//spl Delta/ modulator are specifically responsible for this property and give some initial proof of it. Under a constant input, the tiling phenomenon has as fundamental consequence that the output is a fixed and memoryless modulo function of n successive integrated versions of the input. This gives the theoretical knowledge that the modulator has an equivalent feedforward circuit expression. We give some immediate theoretical consequences on error analysis including the case of time-varying inputs.  相似文献   

15.
Parallelism can be used to increase the conversion bandwidth of delta-sigma (/spl Delta//spl Sigma/) analog-to-digital converters (ADCs). Time-interleaved, parallel /spl Delta//spl Sigma/, and frequency-band-decomposition ADCs are three parallel architectures that are shown to be explained using the same underlying theory. This common structure is then used to explore the design tradeoffs among these architectures. It is shown that the frequency-band-decomposition ADC is insensitive to channel mismatches but it is the most complex to design. The Hadamard modulated parallel /spl Delta//spl Sigma/ ADC provides the best performance (without considering nonidealities) but requires large digital filters. Finally, a randomization technique is described that can be used with parallel /spl Delta//spl Sigma/ architectures to spread out the tonal energy due to channel mismatches over the frequency spectrum.  相似文献   

16.
Let GR(4/sup m/) be the Galois ring of characteristic 4 and cardinality 4/sup m/, and /spl alpha/_={/spl alpha//sub 0/,/spl alpha//sub 1/,...,/spl alpha//sub m-1/} be a basis of GR(4/sup m/) over /spl Zopf//sub 4/ when we regard GR(4/sup m/) as a free /spl Zopf//sub 4/-module of rank m. Define the map d/sub /spl alpha/_/ from GR(4/sup m/)[z]/(z/sup n/-1) into /spl Zopf//sub 4/[z]/(z/sup mn/-1) by d/spl alpha/_(a(z))=/spl Sigma//sub i=0//sup m-1//spl Sigma//sub j=0//sup n-1/a/sub ij/z/sup mj+i/ where a(z)=/spl Sigma//sub j=0//sup n-1/a/sub j/z/sup j/ and a/sub j/=/spl Sigma//sub i=0//sup m-1/a/sub ij//spl alpha//sub i/, a/sub ij//spl isin//spl Zopf//sub 4/. Then, for any linear code C of length n over GR(4/sup m/), its image d/sub /spl alpha/_/(C) is a /spl Zopf//sub 4/-linear code of length mn. In this article, for n and m being odd integers, it is determined all pairs (/spl alpha/_,C) such that d/sub /spl alpha/_/(C) is /spl Zopf//sub 4/-cyclic, where /spl alpha/_ is a basis of GR(4/sup m/) over /spl Zopf//sub 4/, and C is a cyclic code of length n over GR(4/sup m/).  相似文献   

17.
A delta-sigma (/spl Delta//spl Sigma/) analog-to-digital converter featuring 68-dB dynamic range and 64-dB signal-to-noise ratio in a 1-MHz bandwidth centered at an intermediate frequency of 2 MHz with a 48-MHz sample rate is reported. A second-order continuous-time modulator employing 4-bit quantization is used to achieve this performance with 2.2 mW of power consumption from a 1.8-V supply. The modulator including references occupies 0.36 mm/sup 2/ of die area and is implemented in a 0.18-/spl mu/m five-metal single-poly digital CMOS process.  相似文献   

18.
This paper presents a quadrature bandpass /spl Sigma//spl Delta/ modulator with continuous-time architecture. Due to the continuous-time architecture and the inherent anti-aliasing filter, the proposed /spl Sigma//spl Delta/ modulator needs no additional anti-aliasing filter in front of the modulator in contrast to quadrature bandpass /spl Sigma//spl Delta/ modulators with switched-capacitor architectures. The second-order /spl Sigma//spl Delta/ modulator digitizes complex analog I/Q input signals at 1-MHz intermediate frequency and operates within a clock frequency range of 25-100 MHz. The modulator chip achieves a peak signal-to-noise-distortion ratio (SNDR) of 56.7 dB and a dynamic range of 63.8 dB within a 1-MHz signal bandwidth and at a clock frequency of 100 MHz. Furthermore, it provides an image rejection of at least 40 dB. The 0.65-/spl mu/m BiCMOS chip consumes 21.8 mW at 2.7-V supply voltage.  相似文献   

19.
A 1-V switched-capacitor (SC) quadrature IF circuitry for Bluetooth receivers is demonstrated using switched-opamp technique. To achieve double power efficiency while maintaining low sensitivity to finite opamp gain effects for the SC IF circuitry, half-delay integrator-based filters and /spl Sigma//spl Delta/ modulator have been proposed. The proposed quadrature IF circuitry employs a seventh-order IF filter for channel selection and a third-order /spl Sigma//spl Delta/ modulator for analog-to-digital conversion. A noise-shaping extension technique is employed to enhance the resolution of the low-pass /spl Sigma//spl Delta/ modulator by 16 dB while operating at the same oversampling ratio and power consumption. At a 1-V supply, the quadrature IF circuitry achieves a measured IIP3 of -3 dBm at a nominal gain of 24 dB with a 48-dB variable gain control while consuming a total power dissipation of 3.5 mW.  相似文献   

20.
It was previously shown that sigma-delta (/spl Sigma//spl Delta/) modulators of "asymptotic" type theoretically yield an equivalent feedforward system where the recursive nonlinear mechanisms are extracted from the feedback loop and reduced to a memoryless function. With time-varying inputs, we show in this paper, partially by mathematical derivations and partially by experiment, that this system is quasi-equivalent to the original modulator in a sense that we explain. This reduction of the nonlinear mechanisms should permit more refined modeling of the /spl Sigma//spl Delta/ errors in future research, with a better account of the original nonlinearities of asymptotic /spl Sigma//spl Delta/ modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号