首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based upon the message-address concept, this molecular modeling study used the delta-selective agonist spiroindanyloxymorphone (SIOM) as a molecular template for a conformational search and analysis of delta-selective opioid peptides. It was assumed that the tyramine moiety plays the same role for delta-opioid receptor recognition in both peptide and non-peptide ligands. Using 20 reported low-energy conformations of Tyr-cyclo[D-Cys-D-Pen]-OH (JOM-13) for comparison, the geometrical relationship of the two aromatic rings present in SIOM was used for the identification of potential active conformations of JOM-13, from which two delta-receptor-binding models (I and II) were constructed. Models I and II differ from each other in the arrangement of the peptide backbones. To evaluate the two models, a conformational search of two other known delta-selective ligands, [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Pen2,L-Pen5]enkephalin (DPLPE) was performed, using the geometrical relationship of the two aromatic rings defined in the two receptor-binding models as a molecular template. Among the conformations generated from the molecular simulation, low-energy conformers of DPDPE and DPLPE conforming to models I and II were identified. Unlike model I, conformers of DPDPE and DPLPE that fit model II contain a cis amide bond in the Gly3 residue.  相似文献   

2.
A series of deltorphin I analogs containing D- or L-N-methylalanine (MeAla), D- or L-proline (Pro), alpha-aminoisobutyric acid (Aib), sarcosine (Sar) or D-tert-leucine (Tle) in place of D-Ala2, or phenylalanine in place of Tyr1, was synthesized. The opioid activity profiles of these peptides were determined in mu and delta opioid receptor-representative binding assays and bioassays in vitro as well as in the rat tail flick test in vivo. In comparison with the deltorphin I parent, both the L- and the D-MeAla2-analog were slightly more potent delta agonists in the mouse vas deferens (MDV) assay, and the D-MeAla2-analog showed two-fold higher antinociceptive potency in the analgesic test. In view of the fact that deltorphin analogs with an unsubstituted L-amino acid residue in the 2-position generally lack opioid activity, the observed high delta opioid potency of [L-MeAla2]deltorphin I is postulated to be due to the demonstrated presence of a conformer with a cis Tyr1-MeAla2 peptide bond, since the cis conformer allows for a spatial arrangement of the pharmacophoric moieties in the N-terminal tripeptide segment similar to that in active deltorphin analogs containing a D-amino acid residue in the 2-position. Substitution of Aib in the 2-position led to a compound, H-Tyr-Aib-Phe-Asp-Val-Val-Gly-NH2, which displayed lower delta receptor affinity than the parent peptide but higher delta selectivity and, surprisingly, three times higher antinociceptive potency. The D- and L-Pro2-, Sar2- and D-Tle2-analogs showed much reduced delta receptor affinities and were inactive in the tail flick test. Replacement of Tyr1 in deltorphin I with Phe produced a 32-fold decrease in delta receptor affinity but only a 7-fold drop in antinociceptive potency.  相似文献   

3.
1. The density and affinity of binding sites for the delta-selective opioid ligands [3H]-[D-Ala2, Asp4]deltorphin (DELT-I), [3H]-[D-Ala2Glu4]-deltorphin (DELT-II), [3H]-[D-Pen2,D-Pen5]enkephalin (DPDPE), and [3H]-naltrindole (NTI) were determined in whole brain from 10, 15, 25 and 60 day-old C57BL mice. 2. At all ages, the analyses of the homologous displacement curves, gave best fits to single rather than to multiple site models. The binding capacity (Bmax) labelled by [3H]-NTI was about one half that labelled by [3H]-DELT-I, [3H]-DELT-II and [3H]-DPDPE. In 25 and 60 day-old mouse brain the DPDPE Bmax was 25% less than the deltorphin-II Bmax. 3. In saturation experiments, specific binding of [3H]-DELT-I on adult mouse brain homogenates was best fitted by a two-site model (34%, high affinity site, Kd = 1.08 nM and 66% low affinity sites, Kd = 39.9 nM). 4. DPDPE produced a biphasic inhibition of specific [3H]-DELTI-I binding, from 15 days of age onwards. The relative percentage of high and low affinity sites was 72% and 28% in 15 day-, 65% and 35% in 25 day- and 30% and 70% in 60 day-old mice. 5. In adult mouse brain labelled with [3H]-DELT-I, DELT-II recognized 71% of high-affinity and 29% of low-affinity sites DELT-I and DPDPE produced monophasic inhibition of specific [3H]-DELT-II binding to brain homogenates of adult mice. 6. These data suggest that a sub-population of delta-sites (probably the delta 2-subtype), recognized by DELT-I, with high affinity for DELT-II and low affinity for DPDPE develops from 25 days onward. 7. In electrically stimulated mouse vas deferens (MVD) the rank order of potency of the three delta-agonists was: DELT-I > DELT-II > DPDPE in 10 day-old mice: and DELT-I- DELT-II > DPDPE, from 25 days onward. During this time, the potency of DELT-II increased about 15 fold whereas the potency of DELT-I and DPDPE increased only 5 times. The higher efficacy of DELT-II could depend on receptor maturation towards the delta 2-subtype.  相似文献   

4.
Because the role of mu and delta opioid receptors in modulating gastric functions remains uncertain, we studied whether intracerebroventricular (i.c.v.) and subcutaneous (s.c.) injections of new opioid peptides with high selectivity for mu 1 (Lys7-dermorphin), mu 2 (Trp4-Asn7-dermorphin) and delta 2 (D-Ala2-deltorphin II) opioid receptors would modify gastric secretion (after 2 hr pylorus ligature) and transit (after a phenol red meal) in the rat. Neither i.c.v. nor s.c. injections of the delta 2 opioid agonist affected the gastric functions. In contrast, the mu opioid agonists decreased gastric acid secretion and emptying, i.c.v. injections inducing more potent inhibition than s.c. administration. The mu 1 selective opioid antagonist naloxonazine had no effect on the inhibition of the gastric secretory and motor response to these peptides but naloxone completely blocked their effects. Our findings suggest (1) that in rats, stimulation of central naloxonazine insensitive opioid receptors (mu 2 sites) inhibits gastric acid secretion and emptying; and (2) that delta opioid receptors take no part in mediating these functions.  相似文献   

5.
A model for the 3D structure of the transmembrane domain of the delta opioid receptor was predicted from the sequence divergence analysis of 42 sequences of G-protein coupled peptide hormone receptors belonging to the opioid, somatostatin and angiotensin receptor families. No template was used in the prediction steps, which include multiple sequence alignment, calculation of a variability profile of the aligned sequences, use of the variability profile to identify the boundaries of transmembrane regions, prediction of their secondary structure, optimization of the packing shape in a helix bundle, prediction of side chain conformations and structural refinement. The general shape of the model is similar to that of the low resolution rhodopsin structure in that the TM3 and TM7 helices are most buried in the bundle and the TM1 and TM4 helices are most exposed to the lipid phase. An initial assessment of this model was made by determining to what extent a binding site identified using four structurally disparate high affinity delta opioid ligands was consistent with known mutational studies. With the assumption that the protonated amine nitrogen, a feature common to all delta opioid ligands, interacts with the highly conserved Asp127 in TM3, a pocket was found that satisfied the criteria of complementarity to the requirements for receptor recognition for these four diverse ligands, two delta selective antagonists (the fused ring naltrindole and the peptide Tyr-Tic-Phe-Phe-NH2) and the two agonists lofentanil and BW373U86 deduced from previous studies of the ligands alone. These ligands could be accommodated in a similar region of the receptor. The receptor binding site identified in the optimized complexes contained many residues in positions known to affect ligand binding in G-protein coupled receptors. These results also allowed identification of key residues as candidates for point mutations for further assessment and refinement of this model as well as preliminary indications of the requirements for recognition of this receptor.  相似文献   

6.
Neuropathic pains have often been classified as opioid-resistant. Here, spinal (intrathecal) actions of morphine and nonmorphine opioids have been studied in a nerve ligation model of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Nerve-injured animals exhibited allodynia that was stable for up to 6 weeks after the surgery. Morphine did not alter allodynia at doses up to 300 nmol (100 micrograms). In contrast, [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO), a high-efficacy mu opioid agonist, produced a significant, dose-related antiallodynic action. [D-Ala2, Glu4]deltorphin (delta agonist) produced a significant antiallodynic effect only at 300 nmol, reaching approximately 70% of the maximum. Coadministration of morphine with a dose of [D-Ala2, Glu4]deltorphin, which was inactive alone, produced a significant and long-lasting antiallodynic action that was antagonized by NTI (delta receptor antagonist); NTI alone had no effect. Although blockade of cholecystokinin-B (CCKB) receptors with L365,260 did not produce effects alone, a significant antiallodynic action was observed when coadministered with morphine; this elevation of nociceptive threshold was abolished by NTI. The finding that DAMGO, but not very large doses of morphine, produced antiallodynic actions suggests that the ability of mu opioids to alleviate the allodynia is related, in part, to efficacy at postsynaptic mu receptors. At an inactive dose, a delta agonist or a CCKB antagonist enhanced morphine antiallodynic efficacy in an NTI-sensitive fashion. CCKB receptor blockade may enhance endogenous enkephalin actions, resulting in enhancement of morphine efficacy through a mu-delta receptor interaction.  相似文献   

7.
Naltrindole (NTI) is a selective and potent delta-opioid antagonist which preferentially antagonizes a subset of selective delta-opioid agonists. The purpose of this study was to evaluate whether [3H]NTI, the first radiolabeled delta-opioid antagonist, could selectively label delta-opioid receptors in a synaptosomal preparation. Increasing temperature and protein concentration (0.1-1.6 mg protein) increased the specific binding of [3H]NTI. Monovalent and divalent cations (0.01-100 mM) had minimal effects on the binding properties of [3H]NTI, in contrast to their effects on binding of the delta agonists [3H]DPDPE and [3H]DSLET. Subfractionation of rat brain homogenates revealed that [3H]NTI and [3H]DSLET primarily labeled binding sites in synaptosomal and microsomal fractions, whereas [3H]DPDPE labelled half as many sites in synaptosomal fraction. The Bmax determined for [3H]NTI in crude synaptosomal fraction was 95 +/- 12 fmol/mg. The dissociation constant (Kd) was determined from three different methods to be 0.08 +/- 0.02 nM (Scatchard analysis), 0.07 +/- 0.02 nM (competition study) and 0.03 +/- 0.005 nM (kinetic analysis). [3H]NTI binding was not significantly inhibited by mu- or kappa-opioid ligands or by nonopioid compounds. These results demonstrate that [3H]NTI is a potent and selective radioligand for delta-opioid receptors in rat brain preparations.  相似文献   

8.
A series of opioid ligands utilizing the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene++ +-3-propionic acid or 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza- s-indacene-3-propionic acid were synthesized and characterized for their ability to act as a suitable fluorescent label for the mu opioid receptor. All compounds displaced the mu opioid receptor binding of [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol in monkey brain membranes with high affinity. The binding of fluorescent ligands to delta and kappa receptors was highly variable. 5,7-Dimethyl-BODIPY naltrexamine, "6-BNX," displayed subnanomolar affinities for the mu and kappa opioid receptors (Ki 0.07 and 0.43 nM, respectively) and nanomolar affinity at the delta (Ki 1.4 nM) receptor. Using fluorescence spectroscopy, the binding of 6-BNX in membranes from C6 glioma cells transfected with the cloned mu opioid receptor was investigated. In these membranes containing a high receptor density (10-80 pmol/mg protein), 6-BNX labeling was saturable, mu opioid specific, stereoselective (as determined with the isomers dextrorphan and levorphanol), and more than 90% specific. The results describe a series of newly developed fluorescent ligands for the mu opioid receptor and the use of one of these ligands as a label for the cloned mu receptor. These ligands provide a new approach for studying the structural and biophysical nature of opioid receptors.  相似文献   

9.
Analogs of Met-enkephalin and [D-Pen2, D-Pen5]enkephalin (DPDPE) containing the partially fluorinated amino acid 4,4-difluoro-2-aminobutyric acid (DFAB) in the 2- or 3-position of the peptide sequence were synthesized and their opioid activities and receptor selectivities were determined in vitro. The linear fluorinated [D-DFAB2, Met5-NH2]enkephalin showed mu and delta agonist potencies comparable to those of natural [Leu5]enkephalin. The partially fluorinated DPDPE analogs behaved differently as compared with their non-fluorinated correlates. While L-amino acid substitution in position 3 of DPDPE usually resulted in higher delta agonist potency than D-amino acid substitution. [D-DFAB3]DPDPE turned out to be a more potent delta agonist than [L-DFAB3]DPDPE. Furthermore, [D-DFAB3]DPDPE showed over 100-fold higher delta agonist potency than [D-Abu3]DPDPE (Abu = 2-aminobutyric acid), indicating that the fluorine substituents interact favorably with a delta opioid receptor subsite.  相似文献   

10.
In this study we employed the neuroblastoma x glioma NG 108-15 cell line as a model for investigating the effects of long-term activation of cannabinoid receptors on delta opioid receptor desensitization, down-regulation and gene expression. Exposure of NG 108-15 cells to (-)-delta9-tetrahydrocannabinol (delta9-THC) reduced opioid receptor binding, evaluated in intact cells, by approximately 40-45% in cells exposed for 24 h to 50 and 100 nM delta9-THC and by approximately 25% in cells exposed to 10 nM delta9-THC. Lower doses of delta9-THC (0.1 and 1 nM) or a shorter exposure time to the cannabinoid (6 h) were not effective. Down-regulation of 6 opioid receptors was not observed in cells exposed for 24 h to pertussis toxin (PTX) and then treated for 24 h with 100 nM delta9-THC. In cells that were exposed for 24 h to the cannabinoid, the ability of delta9-THC and of the delta opioid receptor agonist [D-Ser2, Leu5, Thr6]enkephalin to inhibit forskolin-stimulated cAMP accumulation was significantly attenuated. Prolonged exposure of NG 108-15 cells to 100 nM delta9-THC produced a significant elevation of steady-state levels of delta opioid receptor mRNA. This effect was not observed in cells pretreated with PTX. The selective cannabinoid receptor antagonist SR 141716A blocked the effects elicited by delta9-THC on delta opioid receptor desensitization, down-regulation and gene expression; thus indicating that these are mediated via activation of cannabinoid receptors. These data demonstrate the existence, in NG 108-15 cells, of a complex cross-talk between the cannabinoid and opioid receptors on prolonged exposure to delta9-THC triggered by changes in signaling through Gi and/or G0-coupled receptors.  相似文献   

11.
A series of 7-arylidinenaltrexones (2a-m) related to the prototypical delta1-selective antagonist, 7-benzylidenenaltrexone 1 (BNTX), have been synthesized in an effort to develop more selective ligands. Testing in smooth muscle preparations revealed that members of the series exhibited varying degrees of selectively for delta receptors, with the o-methoxy (2e) and o-chloro (2j) congeners being most potent and most selective (Ke approximately 0.8 nm). Evaluation of 1, 2e, and 2f sc in mice using the tail-flick procedure indicated that they are selective delta1 opioid receptor antagonists in the lower dose range. At high doses these ligands, including BNTX, exhibited decreased delta1 selectivity due to increases in the ED50 ratios of [D-Ser2,Leu5]enkephalin-Thr6 and morphine. It is concluded that 2e and 2f possess in vivo selectivity similar to that of BNTX, but are less potent as delta1 antagonists.  相似文献   

12.
A study of the binding site requirements associated with the N-substituent of (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) derivatives was undertaken using a set of rigid vs flexible N-substituents. The study showed that compounds 7-9 bearing the trans-cinnamyl N-substituent most closely reproduced the potency at the opioid receptor of the flexible N-propylphenyl or N-propylcyclohexyl analogues previously reported. Neither the N-substituted cis-cinnamyl nor the cis-phenylcyclopropylmethyl compounds 10 and 11, respectively, showed high affinity for the opioid receptor. However, the N-trans-phenylcyclopropylmethyl compound 12 closely approximated the affinity of compounds 7-9. Additionally, we found that free rotation of the phenyl ring is necessary for high affinity binding and mu receptor subtype selectivity as the planar N-substituted thianaphthylmethyl and benzofuranylmethyl compounds 13 and 14 had significantly lower binding affinities. Altogether, these findings suggest that the high binding affinity, selectivity, and antagonist potency of N-propylphenyl or N-propylcyclohexyl analogues of (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) are achieved via a conformation wherein the connecting chain of the N-substituents is extended away from piperidine nitrogen with the appended ring system rotated out-of-plane relative to the connecting chain atoms. This conformation is quite similar to that observed in the solid state for 5, as determined by single crystal X-ray analysis. Additionally, it was found that, unlike naltrexone, N-substituents bearing secondary carbons attached directly to the piperidine nitrogen of 4 suffer dramatic losses of potency vs analogues not substituted in this manner. Using a functional assay which measured stimulation or inhibition of [35S]GTP-gamma-S binding, we show that the trans-cinnamyl analogues of (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine (4) retain opioid pure antagonist activity and possess picomolar antagonist potency at the mu receptor.  相似文献   

13.
In the present study we examine the role of transmembrane aromatic residues of the delta-opioid receptor in ligand recognition. Three-dimensional computer modeling of the receptor allowed to identify an aromatic pocket within the helices bundle which spans transmembrane domains (Tms) III to VII and consists of tyrosine, phenylalanine, and tryptophan residues. Their contribution to opioid binding was assessed by single amino acid replacement: Y129F and Y129A (Tm III), W173A (Tm IV), F218A and F222A (Tm V), W274A (Tm VI), and Y308F (Tm VII). Scatchard analysis shows that mutant receptors, transfected into COS cells, are expressed at levels comparable with that of the wild-type receptor. Binding properties of a set of representative opioids were examined. Mutations at position 129 most dramatically affected the binding of all tested ligands (up to 430-fold decrease of deltorphin II binding at Y129A), with distinct implication of the hydroxyl group and the aromatic ring, depending on the ligand under study. Affinity of most ligands was also reduced at Y308F mutant (up to 10-fold). Tryptophan residues seemed implicated in the recognition of specific ligand classes, with reduced binding for endogenous peptides at W173A mutant (up to 40-fold) and for nonselective alkaloids at W274A mutant (up to 65-fold). Phenylalanine residues in Tm V appeared poorly involved in opioid binding as compared with other aromatic amino acids examined. Generally, the binding of highly selective delta ligands (TIPPpsi, naltrindole, and BW373U86) was weakly modified by these mutations. Noticeably, TIPPpsi binding was enhanced at W274A receptor by 5-fold. Conclusions from our study are: (i) aromatic amino acid residues identified by the model contribute to ligand recognition, with a preponderant role of Y129; (ii) these residues, which are conserved across opioid receptor subtypes, may be part of a general opioid binding domain; (iii) each ligand-receptor interaction is unique, as demonstrated by the specific binding pattern observed for each tested opioid compound.  相似文献   

14.
The postnatal ontogeny of mu, delta and kappa opioid receptor binding sites in the spinal cord of rat pups at various postnatal days was determined using in vitro autoradiographical methods. The functional effect of spinal morphine was also assessed using in vivo electrophysiological methods in rats at P14, P21 and adults (P56). Both mu and kappa opioid receptor binding-sites are present from P0 and spread relatively diffusely throughout the spinal cord. Overall binding peaks at P7 and subsequently decreases to adult levels with the mu opioid receptor binding sites regressing to become denser in the superficial dorsal horn. delta Opioid receptor binding was first seen at P7, and no distinction between superficial and deeper laminae was seen. In the adult, the relative proportions of the opiate receptors in the superficial dorsal horn are 63%, 22% and 15%, for mu, delta and kappa receptor binding sites, respectively. C-fibre evoked dorsal horn neuronal responses recorded from anaesthetized rat pups were highly sensitive to spinal morphine at P21, (EC50 0.005 microgram), compared to the adult (EC50 0.9 microgram). However, the EC50 (0.2 microgram) at P14 was greater than at P21 despite the fact that mu receptor binding was greater at P14. Opioid receptor binding is developmentally regulated and undergoes substantial postnatal reorganization. However, the number of mu receptor binding sites appears not to be the only determinant of functional sensitivity to spinal morphine. Other factors, such as coupling of the receptors are likely to be important.  相似文献   

15.
The mechanism of action of the dimeric enkephalin peptide, biphalin (Tyr-D-Ala-Gly-Phe-NH2)2, which was previously shown to have remarkable high antinociceptive potency and low dependence liability in vivo, has now been studied by electrophysiologic analyses of its effects on the action potential duration (APD) of nociceptive types of sensory dorsal root ganglion (DRG) neurons in culture. Acute application of biphalin (pM-microM) elicited only dose-dependent, naloxone-reversible inhibitory (APD-shortening) effects on DRG neurons. Furthermore, at pM concentrations that evoked little or no alteration of the APD of DRG neurons biphalin selectively antagonized excitatory (APD-prolonging) effects of low (fM-nM) concentrations of bimodally-acting mu and delta opioid agonists and unmasked potent inhibitory effects of these opioids. This dual opioid inhibitory-agonist/excitatory-antagonist property of biphalin is remarkably similar to that previously observed in studies of the ultra-potent opioid analgesic, etorphine on DRG neurons and in sharp contrast to the excitatory agonist action of most mu, delta and kappa opioid alkaloids and peptides when tested at low (pM-nM) concentrations. Chronic treatment of DRG neurons with high (microM) concentrations of biphalin did not result in supersensitivity to the excitatory effects of naloxone nor in tolerance to opioid inhibition effects, in contrast to the excitatory opioid supersensitivity and tolerance that develop in chronic morphine- or DADLE-treated, but not chronic etorphine-treated, neurons. These studies on DRG neurons in vitro may help to account for the unexpectedly high antinociceptive potency and low dependence liability of biphalin as well as etorphine in vivo.  相似文献   

16.
Morphine is well known to produce tolerance and dependence. The mechanisms for these phenomena are not clearly understood and there are a number of conflicting reports that chronic morphine administration decreases, increases, or leaves unchanged the number of opioid binding sites. We examined the potency of MScontin (oral controlled-release preparation of morphine) to induce morphine dependence and also determined the change of mu, delta and kappa opioid receptor types in brain homogenates obtained from morphine-dependent guinea-pigs. 1. Guinea-pigs were implanted subcutaneously with MScontin (300 mg.kg-1) and naloxone was employed to precipitate jumping behavior of withdrawal symptoms at various times. The highest degree of physical dependence was observed on the 2nd day after implantation. Therefore, this period was chosen to investigate opioid receptor binding assay. 2. Two days after implantation, the binding of 3H-DAGO (mu agonist), 3H-DPDPE (delta agonist) and 3H-U69593 (kappa agonist) to brain membranes prepared from morphine dependent and control guinea-pigs was determined. Scatchard plot of the saturation binding data revealed an increase in Bmax values (maximum specific binding) and no change in the Kd values (equilibrium dissociation constants) of 3H-opioid ligand bindings obtained from morphine-dependent animals as compared to controls. These results indicate that brain mu, delta and kappa opioid receptors are up-regulated in morphine dependent guinea-pigs.  相似文献   

17.
We designed highly selective non-peptide agonists for the delta-opioid receptor. On the basis of the "message-address" concept in this field and the accessory site hypothesis, a novel class of heterocycle-fused octahydroisoquinoline derivatives were synthesized. One of these compounds [(4aS*,12aR*)-4a-(3-hydroxyphenyl)-2-methyl-1,2,3,4,4a,5,12, 12a -octahydropyrido[3,4-b]acridine, TAN-67 (2)] showed high selectivity for the delta-opioid receptor (Ki = 1.12 nM) in guinea-pig cerebrum with a 2070-fold lower affinity for the mu-opioid receptor and a 1600-fold lower affinity for the kappa-opioid receptor. TAN-67 was a potent delta-opioid receptor agonist with an IC50 value of 6.61 nM in the mouse vas deferens assay that was reversed by naltrindole (NTI) (Ke = 0.21). Moreover, TAN-67 was shown to have antinociceptive activity following subcutaneous administration in the mouse acetic acid abdominal constriction assay that was antagonized by NTI (delta 1- and delta 2-antagonist) and 7-benzylidinenaltrexone (delta 1-antagonist), but not by naltriben (delta 2-antagonist). This systemically applicable non-peptide agonist will be useful for elucidating the pharmacological properties of the delta-opioid receptor.  相似文献   

18.
To examine a role for the medullary nucleus paragigantocellularis (PGi) in mediation of the symptomatology of opioid withdrawal, bilateral electrical stimulation of the PGi was performed in conscious, unrestrained, opioid naive (nondependent) rats. A characteristic series of behaviors was elicited during each 30-min session of PGi stimulation. The profile of these behaviors resembled qualitatively, but was not quantitatively identical with those seen during precipitated withdrawal from opioid dependence. This behavioral syndrome has been termed, opioid withdrawal-like behavior. The opioid withdrawal-like behaviors were voltage-, but not frequency-, dependent. Tolerance to repeated stimulation of the PGi did not develop following a series of 30-min runs of stimulation over 3.5 h. Intracerebroventricular (i.c.v.) injections of the nonselective opioid antagonist, naloxone, significantly decreased (by 40-50%) the intensity of stimulation-induced behavioral responses, as did injections of either the mu-selective (beta-funaltrexamine, beta-FNA) or the delta-selective (naltrindole, NTI) opioid antagonists. In contrast, similar i.c.v. injections of the kappa-selective antagonist, nor-binaltorphimine (nor-BNI), did not block behavioral responses to PGi stimulation. The results indicate that activation of the PGi by electrical stimulation can elicit behaviors similar to those observed during opioid withdrawal. Endogenous opioids, acting through mu- and delta-, but not kappa-opioid receptors, participate in mediating opioid withdrawal-like behaviors induced by PGi stimulation.  相似文献   

19.
Previous results using an amphibian model showed that systemic and spinal administration of opioids selective for mu, delta and kappa-opioid receptors produce analgesia. It is not known whether non-mammalian vertebrates also contain supraspinal sites mediating opioid analgesia. Thus, opioid agonists selective for mu (morphine; fentanyl), delta (DADLE, [D-Ala2, D-Leu5]-enkephalin; DPDPE, [D-Pen2, D-Pen5]-enkephalin) and kappa (U50488, trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methanesulfonate; CI977, (5R)-(544alpha,744alpha,845beta)-N-methyl-N-[7-(1-p yrr olidinyl)-1-oxaspiro[4,5]dec-8yl]-4-benzofuranaceta mide++ + monohydrochloride) opioid receptors were tested for analgesia following i.c.v. administration in the Northern grass frog, Rana pipiens. Morphine, administered at 0.3, 1, 3 and 10 nmol/frog, produced a dose-dependent and long-lasting analgesic effect. Concurrent naltrexone (10 nmol) significantly blocked analgesia produced by i.c.v. morphine (10 nmol). ED50 values for the six opioids ranged from 2.0 for morphine to 63.9 nmol for U50488. The rank order of analgesic potency was morphine > DADLE > DPDPE > CI977 > fentanyl > U50488. These results show that supraspinal sites mediate opioid analgesia in amphibians and suggest that mechanisms of supraspinal opioid analgesia may be common to all vertebrates.  相似文献   

20.
This study examined the contribution of spinal delta1 and delta2 opioid receptors to the antinociception produced by microinjection of L-glutamate in either the nucleus raphe magnus (NRM) or the nucleus reticularis gigantocellularis pars alpha (NGCp alpha) of the rat. Intrathecal (i.t.) pretreatment with 1 microg of 7-benzylidinenaltrexone (BNTX), a delta1 opioid receptor antagonist, did not antagonize the increase in tail flick latency (TFL) produced by microinjection of L-glutamate in either the NRM or the NGCp alpha. In contrast, i.t. pretreatment with 3 microg of naltriben (NTB), a delta2 opioid receptor antagonist, completely antagonized the increase in TFL evoked by microinjection of L-glutamate in the NRM, but did not antagonize the increase in TFL evoked from the NGCp alpha. These results suggest that the antinociception produced by activation of these bulbospinal pathways is predominantly mediated by spinal delta2 opioid receptors and that there is little, if any, contribution by spinal delta1 opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号