首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Membrane-based carbon dioxide (CO2) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2/CH4, CO2/H2, CO2/N2, and CO2/He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.  相似文献   

4.
Photoresponsive covalent organic frameworks (PCOFs) have emerged as attractive candidates for adsorption, but it is challenging to construct PCOF adsorbents due to structural order loss of covalent organic frameworks (COFs) after introducing photoresponsive motifs and/or tedious steps of postmodification. Here, a facile strategy is developed, by dispersing photoresponsive metal-organic polyhedra (PMOP) into COFs, to endow COFs with photoresponsive adsorption sites. As a proof-of-concept study, a COF with pore size of 4.5 nm and PMOP with suitable molecular size (4.0 and 3.1 nm for trans and cis configuration, respectively) are selected to meet the requirements of proper accommodation space, good guest dispersion, and free isomerization. The structure of COF is well preserved after introducing PMOPs. Interestingly, the obtained photoresponsive host–guest composite (PHGC) adsorbents exhibit photomodulated adsorption capacity on propylene (C3H6) and the change in adsorption capacity can reach up to 43.3% and is stable during multiple cycles. Density functional theory calculations reveal that visible-light irradiation drives the azobenzene motifs in PHGCs to the trans configuration and the adsorption sites are fully open and interact with C3H6. UV-light irradiation makes the azobenzene motifs transform to the cis configuration, leading to the shield of the adsorption sites and the consequent release of C3H6.  相似文献   

5.
6.
Progress in chemistry over the past four decades has generated a variety of porous materials for removing iodine—a radioactive emission accompanying nuclear fission. However, most studies are still based on the notion that entangled pores together with specific binding sites are essential for iodine capture. Here, an unraveled physical picture of iodine capture that overturns the preconception by exploring 1D channeled porous materials is disclosed. 2D covalent organic frameworks are constructed in a way so that they are free of interpenetration and binding sites but consist of 1D open channels. As verified with different channels shaping from hexagonal to tetragonal and trigonal and ranging from micropores to mesopores, all the 1D channels enable a full access to iodine, generalizing a new paradigm that the pore volume determines the uptake capacity. These results are of fundamental importance to understanding iodine uptake and designing materials to treat coagulative toxic vapors.  相似文献   

7.
One of the most pressing environmental concerns of our age is the escalating level of atmospheric CO2. Intensive efforts have been made to investigate advanced porous materials, especially porous organic polymers (POPs), as one type of the most promising candidates for carbon capture due to their extremely high porosity, structural diversity, and physicochemical stability. This review provides a critical and in‐depth analysis of recent POP research as it pertains to carbon capture. The definitions and terminologies commonly used to evaluate the performance of POPs for carbon capture, including CO2 capacity, enthalpy, selectivity, and regeneration strategies, are summarized. A detailed correlation study between the structural and chemical features of POPs and their adsorption capacities is discussed, mainly focusing on the physical interactions and chemical reactions. Finally, a concise outlook for utilizing POPs for carbon capture is discussed, noting areas in which further work is needed to develop the next‐generation POPs for practical applications.  相似文献   

8.
2D materials exhibit superior properties in electronic and optoelectronic fields. The wide demand for high-performance optoelectronic devices promotes the exploration of diversified 2D materials. Recently, 2D covalent organic frameworks (COFs) have emerged as next-generation layered materials with predesigned π-electronic skeletons and highly ordered topological structures, which are promising for tailoring their optoelectronic properties. However, COFs are usually produced as solid powders due to anisotropic growth, making them unreliable to integrate into devices. Here, by selecting tetraphenylethylene monomers with photoelectric activity, elaborately designed photosensitive 2D-COFs with highly ordered donor-acceptor topologies are in situ synthesized on graphene, ultimately forming COF-graphene heterostructures. Ultrasensitive photodetectors are successfully fabricated with the COFETBC–TAPT-graphene heterostructure and exhibited an excellent overall performance with a photoresponsivity of ≈3.2 × 107 A W−1 at 473 nm and a time response of ≈1.14 ms. Moreover, due to the high surface area and the polarity selectivity of COFs, the photosensing properties of the photodetectors can be reversibly regulated by specific target molecules. The research provides new strategies for building advanced functional devices with programmable material structures and diversified regulation methods, paving the way for a generation of high-performance applications in optoelectronics and many other fields.  相似文献   

9.
Electrochemical conversion of carbon dioxide (CO2) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4-Por-COFs) provide a platform for rational design of electrocatalyst for CO2 reduction reaction (CO2RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO2RR. For MN4-Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO2RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN3C1 and Co/CrN2C2 centers are designed. Calculations indicate CoNxCy-Por-COFs exhibit lower limiting potential (−0.76 and -0.60 V) for CO2-to-CO reduction than its parent CoN4-Por-COFs (−0.89 V) and make it feasible to yield deep-reduction degree C1 products CH3OH and CH4. Electronic structure analysis reveals that substituting CoN4 to CoN3C1/CoN2C2 increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN4 to CrN3C1/CrN2C2 lowers the limiting potential for CO2-to-HCOOH reduction. This work predicts N-confused Co/CrNxCy-Por-COFs to be high-performance CO2RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.  相似文献   

10.
11.
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.  相似文献   

12.
Carbon dioxide (CO2), as the primary greenhouse gas in the atmosphere, triggers a series of environmental and energy related problems in the world. Therefore, there is an urgent need to develop multiple methods to capture and convert CO2 into useful chemical products, which can significantly improve the environment and promote sustainable development. Over the past several decades, metal‐organic frameworks (MOFs) have shown outstanding heterogeneous catalytic activity due in part to their high internal surface area and chemical functionalities. These properties and the ability to synthesize MOF platforms allow experiments to test structure‐function relationships for transforming CO2 into useful chemicals. Herein, recent developments are highlighted for MOFs participating as catalysts for the chemical fixation and photochemical reduction of CO2. Finally, opportunities and challenges facing MOF catalysts are discussed in this ongoing research area.  相似文献   

13.
The development of practical solutions for the energy‐efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption‐based processes using different cycling modes, e.g., pressure‐swing adsorption or temperature‐swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption‐based technologies depends on the development of made‐to‐order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal–organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second‐generation fluorinated MOF material, NbOFFIVE ‐1‐Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE ‐1‐Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.  相似文献   

14.
The shape and morphology modulations of covalent organic frameworks (COFs) are both difficult, but are of significance to tackle to realize high-performance and practical applications. Here, a two-step method is reported that separates the phase separation and crystallization processes for the shape-controlled synthesis of COFs. The insight into the polymerization-induced phase separation (PIPS) allows for the flexible shaping of COFs into column, rod, film and others, as well as for constructing hierarchically porous structure. The as-synthesized COF monoliths are crack-free, no powder detaching, and show 214 MPa of compressive modulus. The resulting good permeability and mechanical flexibility enable COF films to apply for flow-through adsorption and extraction of pollutants at high flow rates. This work successfully resolves the contradiction between PIPS and crystallization, offering a general approach for scalable production of COFs with desired shapes, sizes, and morphologies.  相似文献   

15.
Controllable modulation of the stacking modes of 2D (two-dimensional) materials can significantly influence their properties and functionalities but remains a formidable synthetic challenge. Here, an effective strategy is proposed to control the layer stacking of imide-linked 2D covalent organic frameworks (COFs) by altering the synthetic methods. Specifically, a modulator-assisted method can afford a COF with rare ABC stacking without the need for any additives, while solvothermal synthesis leads to AA stacking. The variation of interlayer stacking significantly influences their chemical and physical properties, including morphology, porosity, and gas adsorption performance. The resultant COF with ABC stacking shows much higher C2H2 capacity and selectivity over CO2 and C2H4 than the COF with AA stacking, which is not demonstrated in the COF field yet. Furthermore, the outstanding practical separation ability of ABC stacking COF is confirmed by breakthrough experiments of C2H2/CO2 (50/50, v/v) and C2H2/C2H4 (1/99, v/v), which can selectively remove C2H2 with good recyclability. This work provides a new direction to produce COFs with controllable interlayer stacking modes.  相似文献   

16.
In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications.  相似文献   

17.
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with tailorable compositions, porosities, functionalities, and intrinsic chemical stability. The incorporation of electroactive moieties in the structure transforms COFs into electroactive materials with great potential for energy-related applications. Herein, the recent advances in the design and use of electroactive COFs as capacitors, batteries, conductors, fuel cells, water-splitting, and electrocatalysis are addressed. Their remarkable performance is discussed and compared with other porous materials; hence, perspectives in the development of electroactive COFs are presented.  相似文献   

18.
The ability to design and synthesize monomers can affect fundamental aspects in 2D covalent organic frameworks, such as dimensionality, topology, and pore size. Besides this, the structure of the monomers can also affect interlayer interactions, which provide an additional means to influence crystallinity, layer arrangement, interlayer distances, and exfoliability. Herein, some of the effects that the structure of monomers can have on the interlayer interactions in 2D covalent organic frameworks and related materials are illustrated.  相似文献   

19.
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor–acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π–π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.  相似文献   

20.
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal–organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2, and the distinguishable adsorption sites for H2O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2-driven pore shrinkage can further promote CO2 capture while the adsorbed-H2O-induced phase transitions in turn inhibit H2O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号