首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the quest of increasing safety and efficiency in structural applications, learning from natural materials can be a promising approach. Nature has evolved for billions of years to develop elaborate strategies, achieving optimal material solutions. A brief review of exemplar natural materials is provided here, with a focus on their multiscale structures. The design motifs, common to biological structural materials, are summarized, with a highlight on the structure‐property relationship. A review of recent advancement in the manufacturing of bio‐inspired composites is given, followed by recent and successful case studies. Finally, a critical discussion, highlighting the limitations of the current techniques, and prospecting the future challenges for the design of novel materials for engineering applications.  相似文献   

2.
Rigid biological systems are increasingly becoming a source of inspiration for the fabrication of next generation advanced functional materials due to their diverse hierarchical structures and remarkable engineering properties. Among these rigid biomaterials, nacre, as the main constituent of the armor system of seashells, exhibiting a well‐defined ‘brick‐and‐mortar’ architecture, excellent mechanical properties, and interesting iridescence, has become one of the most attractive models for novel artificial materials design. In this review, recent advances in nacre‐inspired artificial carbonate nanocrystals and layered structural nanocomposites are presented. To clearly illustrate the inspiration of nacre, the basic principles relating to plate‐like aragonite single‐crystal growth and the contribution of hierarchical structure to outstanding properties in nacre are discussed. The inspiration of nacre for the synthesis of carbonate nanocrystals and the fabrication of layered structural nanocomposites is also discussed. Furthermore, the broad applications of these nacre inspired materials are emphasized. Finally, a brief summary of present nacre‐inspired materials and challenges for the next generation of nacre‐inspired materials is given.  相似文献   

3.
《工程(英文)》2020,6(11):1232-1243
Over the past 30 years, additive manufacturing (AM) has developed rapidly and has demonstrated great potential in biomedical applications. AM is a materials-oriented manufacturing technology, since the solidification mechanism, architecture resolution, post-treatment process, and functional application are based on the materials to be printed. However, 3D printable materials are still quite limited for the fabrication of bioimplants. In this work, 2D/3D AM materials for bioimplants are reviewed. Furthermore, inspired by Tai Chi, a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group. With the development of multi-material printing technology, the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.  相似文献   

4.
By mimicking certain biochemical and physical attributes of biological cells, bio‐inspired particles have attracted great attention for potential biomedical applications based on cell‐like biological functions. Inspired by leukocytes, hierarchical biointerfaces are designed and prepared based on specific molecules‐modified leukocyte‐inspired particles. These biointerfaces can efficiently recognize cancer cells from whole blood samples through the synergistic effect of molecular recognition and topographical interaction. Compared to flat, mono‐micro or nano‐biointerfaces, these micro/nano hierarchical biointerfaces are better able to promote specific recognition interactions, resulting in an enhanced cell‐capture efficiency. It is anticipated that this study may provide promising guidance to develop new bio‐inspired hierarchical biointerfaces for biomedical applications.  相似文献   

5.
Natural materials often exhibit excellent mechanical properties. An example of outstanding impact resistance is the pummelo fruit (Citrus maxima) which can drop from heights of 10 m and more without showing significant outer damage. Our data suggest that this impact resistance is due to the hierarchical organization of the fruit peel, called pericarp. The project presented in the current paper aims at transferring structural features from the pummelo pericarp to engineering materials, in our case metal foams, produced by the investment casting process. The transfer necessitates a detailed structural and mechanical analysis of the biological model on the one hand, and the identification and development of adequate materials and processes on the other hand. Based on this analysis, engineering composite foam structures are developed and processed which show enhanced damping and impact properties. The modified investment casting process and the model alloy Bi57Sn43 proved to be excellent candidates to make these bio‐inspired structures. Mechanical testing of both the natural and the engineering structures has to consider the necessity to evaluate the impact of the different hierarchical features. Therefore, specimens of largely varying sizes have to be tested and size effects cannot be ignored, especially as the engineering structures might be upscaled in comparison with the natural role model. All in all, the present results are very promising: the basis for a transfer of bio‐inspired structural hierarchical levels has been set.  相似文献   

6.
7.
Achieving nanostructured or hierarchical hybrid architectures involves cross‐cutting synthetic strategies where all facettes of chemistry (organic, polymers, solid‐state, physical, materials chemistries, biochemistry, etc…?), soft matter and ingenious processing are synergistically coupled. These cross‐cutting approaches are in the vein of bio‐inspired synthesis strategies where the integration of different areas of expertise allows the development of complex systems of various shapes with perfect mastery at different size scales, composition, porosity, functionality, and morphology. These strategies coined “Integrative Chemistry” open a land of opportunities to create advanced hybrid materials with organic‐inorganic or bio‐inorganic character. These hybrid materials represent not only a new field of basic research where creative chemists can express themselves, but also, via their remarkable new properties and multifunctional nature, hybrids are allowing the emergence of innovative industrial applications in extremely diverse fields.  相似文献   

8.
Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next‐generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size‐dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano‐bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink.  相似文献   

9.
Although various photonic devices inspired by natural materials have been developed, there is no research focusing on multibands adaptability, which is not conducive to the advancement of materials science. Herein, inspired by the moth eye surface model, state‐of‐the‐art hierarchical metamaterials (MMs) used as tunable devices in multispectral electromagnetic‐waves (EMWs) frequency range, from microwave to ultraviolet (UV), are designed and prepared. Experimentally, the robust broad bandwidth of microwave absorption greater than 90% (reflection loss (RL) < ?10 dB) covering almost entire X and Ku bands (8.04–17.88 GHz) under a deep sub‐wavelength thickness (1 mm) is demonstrated. The infrared emissivity is reduced and does not affect the microwave absorption simultaneously, further realizing anti‐reflection and camouflage via the strong visible light scattering by the microstructure, and can prevent degradation by reducing the transmittance to less than 10% over the whole near UV band, as well as having hydrophobic abilities. The mechanism explored via simulation model is that topological effects are found in the bio‐structure. This discovery points to a pathway for using natural models to overcome physical limits of MMs and has promising prospect in novel photonic materials.  相似文献   

10.
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio‐hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio‐hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio‐hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria‐driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.  相似文献   

11.
Nanomaterials (NMs) have abundant applications in areas such as electronics, energy, environment industries, biosensors, nano devices, theranostic platforms, etc. Nanoparticles can increase the solubility and stability of drug‐loaded materials, enhance their internalisation, protect them from initial destruction in the biological system, and lengthen their circulation time. The biological interaction of proteins present in the body fluid with NMs can change the activity and natural surface properties of NMs. The size and charge of NMs, properties of the coated and uncoated NMs, nature of proteins, cellular interactions direct their internalisation pathway in the cellular system. Thus, the present review emphasises the impact of coated, uncoated NMs, size and charge, nature of proteins on nano–bio surface interactions and on internalisation with specific focus on cancer cells. The increased activity of NPs may also result in toxicity on health and environment, thus emphasis should be given to assess the toxicity of NMs in the medical field. The e‐data sharing portals of NMs have also been discussed in this review that will be helpful in providing the information about the chemical, physical, biological properties and toxicity of NMs.  相似文献   

12.
This review summarizes recent development of functional materials to improve the barrier properties of paperboard with emphasis on bio‐based polymers. Focus is directed to novel application techniques and water‐borne, renewable coating materials. Some aspects on substrate properties and the requirements on food packaging are discussed as are the processability, convertability, recyclability and biodegradability of packaging materials. The functionality, advantages and disadvantages of several bio‐based polymers are presented in detail. Among these are starch and cellulose derivatives, chitosan, alginate, wheat gluten, whey proteins, polycaprolactone, poly(lactic acid) and polyhydroxyalkanoates. Also discussed is the enhancement of barrier properties by incorporation of nanosized materials, by application of thin protective top coatings and local reinforcement by self‐healing agents. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This review describes emerging trends, basic principles, applications, and future challenges for designing next generation responsive “smart” surface capsules. Advances and importance of “surface” capsules which are not deposited onto the surface but are built into the surface are highlighted for selective applications with specific examples of surface sponge structures formed by high intensity ultrasonic surface treatment (HIUS). Surface capsules can be adapted for biomedical applications, membrane materials, lab‐on‐chip, organ‐on‐chip, and for template synthesis. They provide attractive self‐healing anticorrosion and antifouling prospects. Nowadays delivery systems are built from inorganic, organic, hybrid, biological materials to deliver various drugs from low molecular weight substances to large protein molecules and even live cells. It is important that capsules are designed to have time prolonged release features. Available stimuli to control capsule opening are physical, chemical and biological ones. Understanding the underlying mechanisms of capsule opening by different stimuli is essential for developing new methods of encapsulation, release, and targeting. Development of “smart” surface capsules is preferable to respond to multiple stimuli. More and more often a new generation of “smart” capsules is designed by a bio‐inspired approach.  相似文献   

14.
Bio‐inspired actuation materials, also called artificial muscles, have attracted great attention in recent decades for their potential application in intelligent robots, biomedical devices, and micro‐electro‐mechanical systems. Among them, ionic polymer metal composite (IPMC) actuator has been intensively studied for their impressive high‐strain under low voltage stimulation and air‐working capability. A typical IPMC actuator is composed of one ion‐conductive electrolyte membrane laminated by two electron‐conductive metal electrode membranes, which can bend back and forth due to the electrode expansion and contraction induced by ion motion under alternating applied voltage. As its actuation performance is mainly dominated by electrochemical and electromechanical process of the electrode layer, the electrode material and structure become to be more crucial to higher performance. The recent discovery of one dimensional carbon nanotube and two dimensional graphene has created a revolution in functional nanomaterials. Their unique structures render them intriguing electrical and mechanical properties, which makes them ideal flexible electrode materials for IPMC actuators in stead of conventional metal electrodes. Currently although the detailed effect caused by those carbon nanomaterial electrodes is not very clear, the presented outstanding actuation performance gives us tremendous motivation to meet the challenge in understanding the mechanism and thus developing more advanced actuator materials. Therefore, in this review IPMC actuators prepared with different kinds of carbon nanomaterials based electrodes or electrolytes are addressed. Key parameters which may generate important influence on actuation process are discussed in order to shed light on possible future research and application of the novel carbon nanomateials based bio‐inspired electrochemical actuators.  相似文献   

15.
Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single‐walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length‐dependent interleukin‐1β (IL‐1β) production, in order of long > medium > short. However, there are no differences in transforming growth factor‐β1 production in BEAS‐2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length‐dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length‐dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface.  相似文献   

16.
Programming living cells to organize inorganic nano‐objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio–abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero‐nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer‐by‐layer assembly. It is demonstrated that biologically dynamic self‐assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce.  相似文献   

17.
Graphdiyne is a new member of the family of carbon‐based nanomaterials that possess two types of carbon atoms, sp‐ and sp2‐hybridized carbon atoms. As a novel 2D carbon‐based nanomaterial with unique planar structure, such as uniformly distributed nanopores and large conjugated structure, graphdiyne has shown many fascinating properties in mechanics, electronics, and optics since it was first experimentally synthesized in 2010. Up to now, graphdiyne and its derivatives have been reported to be successfully applied in many areas, such as catalysis, energy, environment, and biomedicine, due to these excellent properties. Herein, the current research progress of graphdiyne‐based materials in biomedical fields is summarized, including biosensing, biological protection, cancer therapy, tissue engineering, etc. The advantages of graphdiyne and its derivatives are presented and compared with other carbon‐based materials. Considering the potential biomedical and clinical applications of graphdiyne‐based materials, the toxicity and biocompatibility are also discussed based on current studies. Finally, future perspectives and possible biomedical applications of graphdiyne‐based materials are also discussed.  相似文献   

18.
This review surveys the work developed in the field of functional hybrid materials, especially those containing conducting organic polymers (COPs), in combination with a variety of inorganic species, from molecular to extended phases, including clusters and nano‐sized inorganic particles. Depending on the dominating structural matrix, we distinguish and analyze organic–inorganic (OI) hybrids, nanocomposite materials, and inorganic–organic (IO) phases. These materials have been used in a wide variety of applications, including energy‐storage applications, electrocatalysis, the harnessing of electrochromic and photoelectrochromic properties, application in display devices, photovoltaics, and novel energy‐conversion systems, proton‐pump electrodes, sensors, or chemiresistive detectors, which work as artificial “noses”.  相似文献   

19.
In 1903, Alexander Graham Bell developed a design principle to generate lightweight, mechanically robust lattice structures based on triangular cells; this has since found broad application in lightweight design. Over one hundred years later, the same principle is being used in the fabrication of nanolattice materials, namely lattice structures composed of nanoscale constituents. Taking advantage of the size‐dependent properties typical of nanoparticles, nanowires, and thin films, nanolattices redefine the limits of the accessible material‐property space throughout different disciplines. Herein, the exceptional mechanical performance of nanolattices, including their ultrahigh strength, damage tolerance, and stiffness, are reviewed, and their potential for multifunctional applications beyond mechanics is examined. The efficient integration of architecture and size‐affected properties is key to further develop nanolattices. The introduction of a hierarchical architecture is an effective tool in enhancing mechanical properties, and the eventual goal of nanolattice design may be to replicate the intricate hierarchies and functionalities observed in biological materials. Additive manufacturing and self‐assembly techniques enable lattice design at the nanoscale; the scaling‐up of nanolattice fabrication is currently the major challenge to their widespread use in technological applications.  相似文献   

20.
Aluminum matrix composites (AMCs) reinforced with the nano‐sized particles are very important materials for the applications in industrial fields. These aluminum matrix composites consist of an aluminum matrix and nano‐sized particles, which own very different physical and mechanical properties from those of the matrix. Nano‐sized particles show a more obvious strengthening effect on the matrix than the micro‐sized particles do, because of the high specific surface area which is positive for the pinning effect during the deformation process. Thus, the nano‐sized particle‐reinforced AMCs usually exhibit a good ductility. The main issues of the fabrication methods are the low wettability between the nano‐sized particles and the molten aluminum alloys, which is fatal to the conventional casting methods, and the agglomeration of nano‐sized particles which happened easier than the larger particles. Several alternative processes have been presented in literature for the production of the nano‐sized particle‐reinforced aluminum composites. This paper is aimed at reviewing the feasible manufacturing techniques used for the fabrication of nano‐sized particle‐reinforced aluminum composites. More importantly, the strengthening mechanisms and models which are responsible for the improvement of mechanical properties of the nano‐sized particle‐reinforced aluminum composites have been reviewed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号