首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Polymeric materials formed via layer‐by‐layer (LbL) assembly have promise for use as drug delivery vehicles. These multilayered materials, both as capsules and thin films, can encapsulate a high payload of toxic or sensitive drugs, and can be readily engineered and functionalized with specific properties. This review highlights important and recent studies that advance the use of LbL‐assembled materials as therapeutic devices. It also seeks to identify areas that require additional investigation for future development of the field. A variety of drug‐loading methods and delivery routes are discussed. The biological barriers to successful delivery are identified, and possible solutions to these problems are discussed. Finally, state‐of‐the‐art degradation and cargo release mechanisms are also presented.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer‐by‐layer‐assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network‐containing film with transparency and superior network structures on self‐healing substrate is obtained by the lateral movement of the underlying self‐healing layer to bring the separated areas of the CNT layer back into contact. The as‐prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface‐to‐volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability.  相似文献   

12.
13.
14.
Time‐resolved photoconductivity measurements are carried out on graphene films prepared by using soluble graphene oxide. High photocurrent generation efficiency is observed for these graphene‐based films, and the relationships between their photoconductivity and different preparation methods, incident light intensity, external electric field, and photon energies are investigated. Higher photoconductivity is observed with higher photon energy at same incident light intensity. By fitting the experimental data to the Onsager model, the primary quantum yields for charge separation to generate bound electron–hole pairs and the initial ion‐pair thermalization separation distance are calculated.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号