首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photonic crystals have proven their potential and are nowadays a familiar concept. They have been approached from many scientific and technological flanks. Among the many techniques devised to implement this technology self‐assembly has always been one of great popularity surely due to its ease of access and the richness of results offered. Self‐assembly is also probably the approach entailing more materials aspects owing to the fact that they lend themselves to be fabricated by a great many, very different methods on a vast variety of materials and to multiple purposes. To these well‐known material systems a new sibling has been born (photonic glass) expanding the paradigm of optical materials inspired by solid state physics crystal concept. It is expected that they may become an important player in the near future not only because they complement the properties of photonic crystals but because they entice the researchers’ curiosity. In this review a panorama is presented of the state of the art in this field with the view to serve a broad community concerned with materials aspects of photonic structures and more so those interested in self‐assembly.  相似文献   

3.
4.
Controlling the diameters of nanotubes represents a major challenge in nanostructures self‐assembled from templating molecules. Here, two series of bolaform hexapeptides are designed, with Set I consisting of Ac‐KI4K‐NH2, Ac‐KI3NleK‐NH2, Ac‐KI3LK‐NH2 and Ac‐KI3TleK‐NH2, and Set II consisting of Ac‐KI3VK‐NH2, Ac‐KI2V2K‐NH2, Ac‐KIV3K‐NH2 and Ac‐KV4K‐NH2. In Set I, substitution for Ile in the C‐terminal alters its side‐chain branching, but the hydrophobicity is retained. In Set II, the substitution of Val for Ile leads to the decrease of hydrophobicity, but the side‐chain β‐branching is retained. The peptide bolaphiles tend to form long nanotubes, with the tube shell being composed of a peptide monolayer. Variation in core side‐chain branching and hydrophobicity causes a steady shift of peptide nanotube diameters from more than one hundred to several nanometers, thereby achieving a reliable control over the underlying molecular self‐assembling processes. Given the structural and functional roles of peptide tubes with varying dimensions in nature and in technological applications, this study exemplifies the predictive templating of nanostructures from short peptide self‐assembly.  相似文献   

5.
The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano‐ and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self‐assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self‐assembly of colloidal particles, acting as wavelength‐scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self‐assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self‐assembled photonic pigments are outlined.  相似文献   

6.
7.
陈可  马会茹 《材料导报》2018,32(7):1094-1099, 1121
响应性光子晶体(Responsive photonic crystals,RPCs)具有无毒、无标记、低消耗和裸眼可视的优点,pH响应性光子晶体(pH-RPCs)为食品安全、生物医药、水体环境等领域提供了一种简便的检测方式。目前主要发展了胶体粒子组装体/反蛋白石、层状堆叠和全息三种结构类型的pH-RPCs。本文在介绍光子晶体(Photonic crystals,PCs)pH响应原理的基础上,从制备方法、结构特点和pH响应性能(如灵敏度、响应时间、可视化)等方面对上述pH-RPCs进行了详细的综述,分析总结了它们各自的优势和不足,并对其未来的发展进行了展望。  相似文献   

8.
9.
Discontinuous plasmonic‐3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5‐methoxy‐2‐(3‐sulfopropoxy)‐1,4‐phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near‐field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal‐coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence‐imaging, and optoelectronic applications.  相似文献   

10.
11.
12.
13.
14.
15.
16.
The inorganic semiconductor is an attractive material in sewage disposal and solar power generation. The main challenges associated with environment‐sensitive semiconductors are structural degradation and deactivation caused by the unfavorable environment. Here, inspired by the pomegranate, a self‐protection strategy based on the self‐assembly of silver chloride (AgCl) particles is reported. The distributed photosensitive AgCl particles can be encapsulated by themselves through mixing aqueous silver nitrate and protic ionic liquids (PILs). A probable assembling mechanism is proposed based on the electrostatic potential investigation of PILs cations. The AgCl particles inside the shell maintain their morphology and structure well after 6 months light‐treatment. Moreover, they exhibit excellent photocatalytic activity, same as newly prepared AgCl particles, for degradation of methyl orange (MO), neutral red (NR), bromocresol green (BG), rhodamine B (RhB), Congo red (CR), and crystal violet (CV).  相似文献   

17.
18.
Peptide self‐assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide‐based, self‐assembled materials have expanded beyond the construction of high‐order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self‐assembled peptide nanomaterials (e.g., cross β‐sheet‐based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide‐based self‐assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium‐ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self‐assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号