首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
2.
3.
Recent advances and achievements in emerging Li‐X (X = O2, S, Se, Te, I2, Br2) batteries with promising cathode materials open up new opportunities for the development of high‐performance lithium‐ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high‐performance Li‐X (X = O2, S, Se, Te, I2, Br2) batteries. We start with a brief introduction to explain why Li‐X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li‐O2 (S) batteries. In terms of the emerging Li‐X (Se, Te, I2, Br2) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li‐Se (Te) batteries using carbonate‐/ether‐based electrolytes, made with different electrode fabrication techniques, and of Li‐I2 (Br2) batteries with various cell designs (e.g., dual electrolyte, all‐organic electrolyte, with/without cathode‐flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li‐X (X = O2, S, Se, Te, I2, Br2) batteries is presented.  相似文献   

4.
5.
With their impressive properties such as remarkable unit tensile strength, modulus, and resistance to heat, flame, and chemical agents that normally degrade conventional macrofibers, high‐performance macrofibers are now widely used in various fields including aerospace, biomedical, civil engineering, construction, protective apparel, geotextile, and electronic areas. Those macrofibers with a diameter of tens to hundreds of micrometers are typically derived from polymers, gel spun fibers, modified carbon fibers, carbon‐nanotube fibers, ceramic fibers, and synthetic vitreous fibers. Cellulose nanofibers are promising building blocks for future high‐performance biomaterials and textiles due to their high ultimate strength and stiffness resulting from a highly ordered orientation along the fiber axis. For the first time, an effective fabrication method is successfully applied for high‐performance macrofibers involving a wet‐drawing and wet‐twisting process of ultralong bacterial cellulose nanofibers. The resulting bacterial cellulose macrofibers yield record high tensile strength (826 MPa) and Young's modulus (65.7 GPa) owing to the large length and the alignment of nanofibers along fiber axis. When normalized by weight, the specific tensile strength of the macrofiber is as high as 598 MPa g?1 cm3, which is even substantially stronger than the novel lightweight steel (227 MPa g?1 cm3).  相似文献   

6.
7.
This paper reports solution‐processed, high‐efficiency polymer light‐emitting diodes fabricated by a new type of roll‐to‐roll coating method under ambient air conditions. A noble roll‐to‐roll cohesive coating system utilizes only natural gravity and the surface tension of the solution to flow out from the capillary to the surface of the substrate. Because this mechanism uses a minimally cohesive solution, the roll‐to‐roll cohesive coating can effectively realize an ultra‐thin film thickness for the electron injection layer. In addition, the roll‐to‐roll cohesive coating enables the fabrication of a thicker polymer anode film more than 250 nm at one time by modification of the surface energy and without wasting the solution. It is observed that the standard sheet resistance deviation of the polymer anode is only 2.32 Ω/□ over 50 000 bending cycles. The standard sheet resistance deviation of the polymer anode in the different bending angles (0 to 180°) is 0.313 Ω/□, but the case of the ITO‐PET is 104.93 Ω/□. The average surface roughness of the polymer anode measured by atomic force microscopy is only 1.06 nm. Because the surface of the polymer anode has a better quality, the leakage current of the polymer light‐emitting diodes (PLEDs) using the polymer anode is much lower than that using the ITO‐PET substrate. The luminous power efficiency of the two devices is 4.13 lm/W for the polymer anode and 3.21 lm/W for the ITO‐PET. Consequently, the PLEDs made by using the polymer anode exhibited 28% enhanced performance because the polymer anode represents not only a higher transparency than the ITO‐PET in the wavelength of 560 nm but also greatly reduced roughness. The optimized the maximum current efficiency and power efficiency of the device show around 6.1 cd/A and 5.1 lm/W, respectively, which is comparable to the case of using the ITO‐glass.  相似文献   

8.
Over the past several decades, lattice materials have been developed and used as engineering materials for lightweight and stiff industrial structures. Recent advances in additive manufacturing techniques have prompted the emergence of architected materials with minimum characteristic sizes ranging from several micrometers to hundreds of nanometers. Taking advantage of the topological design, structural optimization, and size effects of nanomaterials, various 3D micro‐/nanolattice materials composed of different materials exhibit combinations of superior mechanical properties, such as low density, high strength (even approaching the theoretical limits), large deformability, good recoverability, and flaw tolerance. As a result, some micro‐/nanolattices occupy an unprecedented area in Ashby charts with a combination of different material properties. Here, recent advances in the fabrication and mechanics of micro‐/nanolattices are described. First, various design principles and advanced techniques used for the fabrication of micro‐/nanolattices are summarized. Then, the mechanical behaviors and properties of micro‐/nanolattices are further described, including the compressive Young's modulus, strength, energy absorption, recoverability, and tensile behavior, with an emphasis on mechanistic insights and origins. Finally, the main challenges in the fabrication and mechanics of micro‐/nanolattices are addressed and an outlook for further investigations and potential applications of micro‐/nanolattices in the future is provided.  相似文献   

9.
10.
A macroscopic film (2.5 cm × 2.5 cm) made by layer‐by‐layer assembly of 100 single‐layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat‐treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near‐perfect in‐plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in‐plane thermal conductivity is exceptionally high, 2292 ± 159 W m?1 K?1 while in‐plane electrical conductivity is 2.2 × 105 S m?1. The high performance of these films is attributed to the combination of the high in‐plane crystalline order and unique stacking configuration through the thickness.  相似文献   

11.
12.
Wearable electronics are emerging as a platform for next‐generation, human‐friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e‐textiles have evolved into fiber‐based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e‐textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e‐textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e‐textile systems are suggested.  相似文献   

13.
Phase‐engineered type‐II metal–selenide heterostructures are demonstrated by directly selenizing indium‐tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low‐temperature process, which results in large‐area films with high uniformity. Compared to single‐metal–selenide‐based photodetectors, the multimetal–selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type‐II heterostructure that is beneficial for the separation of the electron–hole pairs. The multimetal–selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W?1 and an on/off current ratio of up to 102. Interestingly, all‐transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests.  相似文献   

14.
Conductive polymers are promising for bone regeneration because they can regulate cell behavior through electrical stimulation; moreover, they are antioxidative agents that can be used to protect cells and tissues from damage originating from reactive oxygen species (ROS). However, conductive polymers lack affinity to cells and osteoinductivity, which limits their application in tissue engineering. Herein, an electroactive, cell affinitive, persistent ROS‐scavenging, and osteoinductive porous Ti scaffold is prepared by the on‐surface in situ assembly of a polypyrrole‐polydopamine‐hydroxyapatite (PPy‐PDA‐HA) film through a layer‐by‐layer pulse electrodeposition (LBL‐PED) method. During LBL‐PED, the PPy‐PDA nanoparticles (NPs) and HA NPs are in situ synthesized and uniformly coated on a porous scaffold from inside to outside. PDA is entangled with and doped into PPy to enhance the ROS scavenging rate of the scaffold and realize repeatable, efficient ROS scavenging over a long period of time. HA and electrical stimulation synergistically promote osteogenic cell differentiation on PPy‐PDA‐HA films. Ultimately, the PPy‐PDA‐HA porous scaffold provides excellent bone regeneration through the synergistic effects of electroactivity, cell affinity, and antioxidative activity of the PPy‐PDA NPs and the osteoinductivity of HA NPs. This study provides a new strategy for functionalizing porous scaffolds that show great promise as implants for tissue regeneration.  相似文献   

15.
Ordered molecular materials are increasingly used in active electronic and photonic organic devices. In this progress report we discuss whether the self‐assembling properties and supramolecular structures of liquid crystals can be tailored to improve such devices. Recent developments in charge‐transporting and luminescent liquid crystals are discussed in the context of material requirements for organic light‐emitting devices, photovoltaics, and thin film transistors. We identify high carrier mobility, polarized emission, and enhanced output‐coupling as the key advantages of nematic and smectic liquid crystals for electroluminescence. The formation of anisotropic polymer networks gives the added benefits of multilayer capability and photopatternability. The anisotropic transport and high carrier mobilities of columnar liquid crystals make them promising candidates for photovoltaics and transistors. We also outline some of the issues in material design and processing that these applications demand. The photonic properties of chiral liquid crystals and their use as mirror‐less lasers are also discussed.  相似文献   

16.
Single-walled carbon nanotubes (SWNTs) can be successfully cut with relatively homogeneous sizes using a planetary mill. The optimized conditions produce highly dispersible SWNTs that can be efficiently functionalized in a variety of synthetic ways. As clearly shown by Raman spectroscopy, the milling/cutting procedure compares very favorably with the most common way of purifying SWNTs, namely, treatment with strong oxidizing acids. Moreover a similar milling process can be used to functionalize and cut pristine SWNTs by one-step nitrene chemistry.  相似文献   

17.
18.
19.
20.
Organic light‐emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field‐effect transistors (OFETs) and the light‐generation capability of organic light‐emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state‐of‐the‐art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source‐drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号