首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
SBR法处理低碳源城市污水除磷脱氮效果及规律研究   总被引:6,自引:0,他引:6  
介绍了用SBR法(序批式活性污泥法)处理低碳源城市污水,研究了生物除磷效果和好氧反硝化脱氮效果及其影响因素.试验结果表明,磷的出水质量浓度低于0.8mg/L,去除率达到92%~98%;磷的厌氧释放是好氧吸收的前提条件,而且厌氧释磷量和好氧吸磷量存在线性关系;DO是影响好氧反硝化的主要因素,当DO=2mg/L时,总氮的去除率最大.  相似文献   

2.
主要研究了在淹没序批式生物膜反应器中投加生物优势菌种前后,不同工艺参数对系统除磷性能的影响.采用平行对比试验,试验结果表明:系统在填料装填密度为30%,反应时间为10h(其中厌氧3h,好氧7h),pH值在6.5—7.5,溶解氧(DO)浓度在6.0—7.0mg/L时,投加优势菌种后的2号反应器能够保持平稳和较高的除磷效率(90%以上),TP去除率比未投加优势菌种的1号反应器提高20%以上.  相似文献   

3.
通过控制曝气量的方式研究了溶解氧对污泥减量系统除磷脱氮过程的影响。发现在低剂量2,4,5-三氯苯酚(TCP)作用下。活性污泥的内源SOUR值增加,SBR系统的低DO状态持续时间增长,周期平均DO降低,形成了有利于同时硝化反硝化SND脱氮的低DO环境。综合考虑TCP浓度对污泥减量、除磷脱氮和污泥性能的影响,TCP浓度建议为2mg/L,SBR周期平均DO值控制为2mg/L。与对照系统相比,2mg/LTCP污泥减量系统的曝气量增加了23%,剩余污泥排放量减少34.6%,出水水质与对照系统相当,实现了达标排放。表明低DO控制状态下、辅以排富磷污水除磷方式,TCP系统可以同时获得优异的除磷脱氮和污泥减量效果。  相似文献   

4.
新型GS-MBR工艺生物强化除磷试验研究   总被引:2,自引:0,他引:2  
采用新型GS-MBR对校园污水生物强化除磷效果进行了试验研究。小试装置采用全泥龄操作,正常运行92d。SBR运行条件为厌氧5h,好氧5h,沉淀1h,出水与进水合计1h,进水COD、NH4^+—N、TP和TN分别为202-550mg/L、7.66~16.46mg/L、1.25~3.28mg/L和10.56-38.26mg/L,去除效率平均分别为95,2%、95%、96.4%和50.5%。进水COD/TP=148,出水磷浓度仅为70μg/L。分析表明:进水COD/TP是本装置生物强化除磷的关键因素,在进水COD/TP较高的条件下,无需排泥也能达到强化除磷的目的。此外,膜污染以无机盐为主,酸洗效果优于碱洗。  相似文献   

5.
为了研究单级好氧除磷工艺的影响因素,采用序批式间歇反应器(SBR),通过设定不同的反应时间和进水碳磷比(质量比),考察了单级好氧过程中PO_4~(3-)-P浓度、聚-β-羟基丁酸盐(PHB)以及DO、ORP等参数的变化.结果表明,在DO浓度低于0.6 mg/L的单级好氧系统中,存在着稳定的生物除磷现象.进水末期污泥中的PHB含量与放磷量近似成正比,且适当地缩短反应时间有助于强化除磷效果.碳磷比与除磷的关系比较复杂,当PO_4~(3-)-P浓度恒定时,增加碳磷比可显著强化放磷和吸磷过程;当碳源浓度恒定时,增加碳磷比对强化除磷的作用有限.ORP的变化趋势能够清楚地指示除磷的过程,当ORP小于-150 mV时,系统会发生显著的磷释放.在低溶解氧环境下,传质受限产生的厌氧微环境是发生单级好氧生物除磷的重要原因.  相似文献   

6.
反硝化除磷颗粒污泥的培养与除磷性能   总被引:2,自引:0,他引:2  
以普通絮状污泥为接种污泥,人工配制生活污水,采用厌氧/缺氧/好氧的运行方式,通过在缺氧段投加硝酸盐氮和控制选择压,经98 d的培养与调整在SBR中获得具有反硝化除磷功能的颗粒污泥.稳定运行的颗粒污泥粒径主要在0.3~0.5 mm,SVI约为45 mL/g,ρ(MLSS)约为4 000 mg/L.具有反硝化除磷功能的颗粒污泥对COD、氨氮和磷酸盐的去除率分别可达88%、96%和90%.通过分析磷的去向及X射线衍射检测结果可知存在颗粒污泥的磷酸盐沉淀除磷现象.培养的反硝化除磷颗粒污泥除生物除磷外,还具有磷酸盐固化于污泥颗粒方式除磷.  相似文献   

7.
为了探讨NO3^-—N和DO分别作为吸磷过程电子受体时的峰值浓度,采用序批式间歇反应器(SBR)进行静态平行试验,在按照厌氧/好氧方式运行的EBPR系统中,分别考察了在NO3^--N初始浓度为50mg·L、75mg·L^-1和100mg·L^-1时以及曝气量为16L·h^-1、28L·h^-1和40L·h^-1条件下的吸磷过程。结果表明,在内碳源充足的情况下,决定吸磷速率快慢的主要因素不是电子受体的浓度,而是能否及时地向系统中提供足够的电子受体。与DO相比,NO3^--N作为吸磷过程电子受体时的效率偏低,且被反硝化掉的NO3^--N量与被吸收的PO4^3--P量近似成正比。这说明采用厌氧/好氧方式运行的EBPR系统中也存在反硝化除磷菌,计算发现其占总聚磷菌的比例为17.70%。利用pH变化曲线作为吸磷过程的控制手段实用性不大,以NO3^--N和DO作为吸磷过程电子受体的峰值浓度分别为50.00mg·L^-1和0.4mg·L^-1。  相似文献   

8.
DO对除磷过程的长期影响   总被引:6,自引:0,他引:6  
为研究溶解氧(DO)对除磷过程的长期影响,采用序批式间歇反应器(SBR),通过设置好氧阶段DO的不同(5.5~7.0 mg/L和0.5~1.5 mg/L),系统地考察长期运行在这两种DO水平下强化生物除磷系统(EBPR)除磷过程的特点.结果表明:在pH 7.2~7.6,温度(23±0.5)℃时,高DO对放磷和吸磷两个阶段均会产生负面影响.其厌氧阶段的放磷量比低DO情况下要少43.08%.吸磷过程在好氧阶段初始30 min内进行得最快,该期间内高低DO污泥的最大比吸磷速率分别为6.27和11.45 mg.g-1.h-1,前者比后者少45.24%.分析认为,过度曝气导致的聚磷菌体内聚β羟基丁酸盐(PHB)的不足和过多的进水碳源被用作反硝化,是本试验高DO状态下除磷性能恶化的主要原因.高DO在抑制丝状菌膨胀方面并不比低DO占有明显的优势,污泥除磷性能的改善往往伴随着污泥沉降性的好转.  相似文献   

9.
通过正交试验研究了溶解氧(DO)、污泥浓度(MLSS)、污泥回流比(R)对改良型氧化沟脱氮除磷效果的影响。极差分析结果表明,影响CODCr、TN、TP去除率各因素的重要性顺序分别为:DO〉MLSS〉R、DO〉R〉MLSS、MLSS〉R〉DO。方差分析结果表明,DO和MLSS对脱碳具有较显著的影响,DO对脱氮具有较显著的影响,MLSS、R对除磷具有较显著的影响。改良型氧化沟脱氮除磷的最佳运行工况为氧化沟缺氧区DO=0.3-0.5 mg/L、好氧区DO=2.0-2.5 mg/L,MLSS=5 000 mg/L,污泥回流比R=65%。  相似文献   

10.
活性氧化铝除磷吸附剂的试验研究   总被引:1,自引:0,他引:1  
本研究以活性氧化铝为吸附剂,用静态实验方法,对活性氧化铝进行吸附除磷性能评价。实验结果表明,r=Al2O3最佳投加量为0.5mg/50mL,最适宜的pH值是2.8~3.8,吸附平衡时间为2h,最大吸附容量为9.4mg/g,当磷的初始浓度为10mg/L时去除率最高。  相似文献   

11.
目的研究以亚硝酸盐为电子受体的反硝化除磷工艺中的运行参数以及影响因素.方法采用序批式反应器(SBR),在厌氧/缺氧条件下,利用亚硝酸盐为电子受体进行反硝化除磷的静态对比试验,改变温度、电子受体质量浓度、泥龄等因素,考察此工艺的最佳运行条件.结果在反硝化除磷工艺中,乙酸钠是较理想的碳源;当亚硝酸盐质量浓度在30 mg/L时,TP的去除效果最佳,过高则产生抑制作用;当泥龄为32 d,温度控制在25℃时,反硝化除磷效果最为理想.结论反硝化除磷系统是一个复杂的集合体,其影响因素主要有温度、电子受体浓度、污泥龄等,控制工艺最佳运行条件对获得较好的反硝化除磷效果非常重要,并为反硝化除磷工艺的应用提供参考依据.  相似文献   

12.
A2/O氧化沟工艺中NO3-对生物除磷影响   总被引:5,自引:0,他引:5  
为研究NO3-对生物除磷的影响,采用A2/O氧化沟中试对城市污水进行4个月的研究,并结合静态试验和实际A2/O氧化沟污水处理厂运行结果,研究NO3-对厌氧释磷影响,首次全面研究NO3-对二沉池释磷的影响.中试试验反应器总有效容积为375 L.结果表明,氧化沟出水ρ(NO3-)>5.0 mg/L时,回流污泥带入的NO3-较多,不利于磷的释放,TP去除率随出水NO3-的升高而降低;氧化沟出水ρ(NO3-)<5.0 mg/L时,NO3-较低导致在二沉池中进行了内碳源释磷反应,TP去除率随NO3-的降低而降低;静态试验结果证明当ρ(NO3-)>0.5 mg/L时,NO3-抑制磷的内碳源释放.NO3-降低至0.5 mg/L以下时,发生内碳源释磷,比内碳源释磷速率为0.18~0.47 mg/(gVSS.h);某污水处理厂运行结果也证明,二沉池污泥停留时间过长,发生内碳源释磷致使出水TP升高.  相似文献   

13.
为研究pH对厌氧-限氧SBR同步脱氮除磷效果以及对N_2O释放的影响,接种亚硝化活性污泥,以含乙酸钠、氨氮、磷酸盐的人工配水为基质,通过逐步提高进水COD,在厌氧-限氧(DO 0.3~0.8 mg/L)SBR中成功实现了同步脱氮除磷(SNDPR).反应器稳定期间氮、磷的去除率分别达(76.1±5)%、(98.4±1)%.采用批式实验研究了不同进水pH(6.0、7.0、8.0、9.0)对脱氮除磷效果及N_2O释放的影响.结果表明,pH为9.0时除磷效果最好,除磷率达87.7%,其次为pH为6.0时,除磷率达84.0%;随着pH降低,氨氧化速率呈升高趋势,pH为6.0时单位MLSS氨氧化速率和脱氮率最大,二者分别为3.7 mg/(L·h·g)和83.9%;N_2O释放量随pH的升高而减小,pH为6.0时的释放量是9.0时的3.5倍.综上,pH为6.0时,能获得较高的脱氮除磷效率,但同时会增加N_2O的释放量.  相似文献   

14.
探讨了碳氮比较低(C/N〈5)时,不同原水进水C/N对MUCT工艺性能的影响。试验结果表明:随着进水C/N的增加,出水TN去除率升高,最高为84.1%,缺氧区2出水NO3^--N浓度从2.76mg/L降低到0mg/L;随着C/N的增加,好氧区的硝化速率下降,好氧吸磷率增加,缺氧区2吸磷常数有所增加,和利用复杂的有机物做为碳源的吸磷速率常数接近。  相似文献   

15.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

16.
体积比对分段进水工艺处理低浓度废水性能的影响   总被引:1,自引:0,他引:1  
采用改良A2/O四点分段进水工艺处理低浓度、低碳氮比城市生活污水.在HRT为8.7 h、SRT为15 d、污泥回流比为75%、进水流量分配比为20∶35∶35∶10、好氧段ρ(DO)为1~1.5 mg/L条件下,通过调整不同的厌氧/缺氧/好氧体积比,分析体积比对污染物去除性能的影响.结果表明:不同的体积比对COD、氨氮的去除基本无影响,但对TN、TP去除影响较大.当厌氧/缺氧/好氧体积比为4∶8∶10时,对污染物去除效果最佳,出水COD、氨氮、总氮、总磷质量浓度分别为28.12、0.58、9.26、0.43 mg/L,进水碳源有效利用率达72.4%.通过逐步减少好氧段体积以提高缺氧段体积的策略,可使进水碳源在各缺氧段或厌氧段被充分利用,同时有利于反硝化除磷菌的富集,DPAOs最高比例为20.9%.  相似文献   

17.
为解决曝气生物滤池(biological aerated filter,BAF)工艺不能有效除磷的问题,采用向缺氧-曝气生物滤池工艺(anoxic-biological aerated filter,A-BAF)缺氧段投加聚合氯化铝的方法以提高除磷效果.通过小试试验考察聚合氯化铝(poly aluminum chloride,PAC)对A-BAF工艺运行特性的影响.结果表明:投加PAC能有效提高A-BAF工艺的除磷效果,对有机物的去除、硝化和反硝化均无明显影响.在进水TP为3.5 mg/L、PAC投加量为100 mg/L的条件下,出水TP由2.57 mg/L降至0.34 mg/L;而出水COD、NH4+-N和TN质量浓度均在30、1和11 mg/L左右.同时,投加PAC有利于延长BAF滤柱的反冲洗周期,反冲洗周期由原来的4 d提高到10 d,剩余污泥的比阻也由未投加药剂时的210×1012m/kg降至125×1012m/kg.  相似文献   

18.
为进一步研究滨岸缓冲带对面源污染物的净化机制,建立了农田、乔草带、滨水植物带、湿生草本带4个代表性试验小区,重点分析了其对氮、磷营养元素的净化能力.结果表明,农田是湖泊、水库等水体的重要的非点源污染源;乔草混合带对总氮(TN)及总磷(TP)有良好的净化作用,去除率分别为35.2%和32.6%.挺水植物对TN的去除效果非常显著,其质量浓度削减率达到88.9%,但是对TP表现为释放状态;草本过滤带具有较好的TN、TP净化效果,污染物去除率分别为37.4%和49.8%.过滤带内植被条件和入流污染物浓度是造成过滤带对TN净化效果差异的重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号