首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
高强混合钢纤维混凝土的力学性能   总被引:1,自引:0,他引:1  
为改善高强混凝土的脆性,将2种尺寸的钢纤维混合掺入高强混凝土中,通过抗压强度、抗拉强度及抗折强度分析了不同钢纤维混掺对其力学性能的改善作用;采用ASTM C1018方法分析了高强混合钢纤维混凝土的韧性.结果表明:长、短钢纤维混掺会降低高强混凝土的流动性,且短钢纤维对其流动性影响更为显著;在相同掺量(体积分数)下,混掺钢纤维高强混凝土的抗压强度及抗折强度较单掺钢纤维高强混凝土高;当长、短钢纤维混掺比适当时,其劈裂抗拉强度也有所提高;长、短钢纤维混掺对高强混凝土韧性改善效果显著,采用1.50%长钢纤维与0.50%短钢纤维混掺可达到最佳增韧效果.  相似文献   

2.
在砂浆中分别掺入11种不同比例的熔抽型超短超细钢纤维,并与相同掺量的剪切型超短超细钢纤维 增强水泥砂浆进行了性能对比.结果表明,二种超短超细钢纤维的掺入均可提高水泥浆体的抗折强度、抗压强度和韧性,但熔抽型超短超细钢纤维对水泥砂浆的增强增韧作用高于剪切型超短超细钢纤维,并存在显著的纤维增强几何尺寸效应.  相似文献   

3.
采用自制落锤冲击试验装置,以韧性系数和延性比来评价钢纤维混凝土(SFRC)的韧性,研究了钢纤维对混凝土抗冲击性能的影响.以纤维分散系数表征钢纤维分布的均匀程度,对冲击面裂缝进行观测,并对冲击断面纤维分布进行了统计计算,分析了冲击荷载作用下钢纤维混凝土的阻裂效应及增韧机理.结果表明:钢纤维的掺入可显著提高混凝土的抗冲击性能;在钢纤维掺量(体积分数,下同)为0.8%时,钢纤维混凝土的延性比超过15%,其韧性系数随钢纤维掺量的提高而增大,在钢纤维掺量为1.0%时达到最大值,接近基准混凝土的10倍;钢纤维的掺入降低了基体脆性,改善了其塑性特征,从而延缓了钢纤维混凝土的裂缝开展,并改善了其主裂缝形状、减少了裂缝条数;钢纤维混凝土的抗冲击韧性与钢纤维掺量及其在冲击断面上的分布均匀程度密切相关.  相似文献   

4.
纤维增强活性粉末混凝土不仅要追求强度,更要考虑实际工作性能.通过对不同钢纤维掺量的活性粉末混凝土进行强度与坍落扩展度试验,对试验数据进行分析,得出钢纤维掺量与坍落扩展度、强度和折压比的关系;拟合钢纤维掺量与强度、折压比的经验公式;结果表明适量的钢纤维掺量对活性粉末混凝土的增强增韧效果显著,过大掺入钢纤维会造成拌和困难和...  相似文献   

5.
通过在砂浆中分别掺入11种不同比例的熔抽型超细钢纤维(长度:13 mm,长径比:65),与同等掺量的普通钢纤维增强水泥砂浆的性能做了对比,结果表明:熔抽型超细钢纤维增强水泥砂浆的施工和易性比普通钢纤维增强水泥砂浆好,熔抽型超细钢纤维提高了水泥浆体的抗折强度、抗压强度和韧性,其对水泥砂浆的增强增韧作用高于普通钢纤维,存在显著的纤维增强几何尺寸效应。  相似文献   

6.
通过开展不同体积掺量钢纤维(0,0.5%,1.0%,1.5%,2.0%,2.5%)轻骨料混凝土抗压强度、弯折韧性和抗冲击性能等力学性能试验研究,分析不同掺量钢纤维对轻骨料混凝土各项力学性能的影响规律。试验表明:钢纤维掺入到轻骨料混凝土中后,有助于提高轻骨料混凝土抗压强度,显著改善轻骨料混凝土受压破坏形态;轻骨料混凝土的抗折强度随着纤维掺量的增加而显著改善,并能提高轻骨料混凝土的折压强度比,改善轻骨料混凝土的脆性问题;对轻骨料混凝土的弯折韧性增强作用较为显著,试验发现掺入钢纤维后的轻骨料混凝土弯折韧性比没有掺加钢纤维的轻骨料混凝土显著提高;钢纤维对轻骨料混凝土的抗冲击性能增大幅度较为显著。  相似文献   

7.
在混凝土中同时加入钢纤维和纳米矿粉,对比研究了钢纤维和纳米矿粉掺量以及基体强度对钢纤维纳米混凝土劈拉性能和抗折性能的影响规律。结果表明,钢纤维的加入及增大掺量,改善了试件的破坏特征,劈拉和抗折强度均显著增长;基体强度提高的同时,拉压强度比和折压强度比降低;纳米Si O2和纳米Ca CO3掺量的增大,可小幅度提高劈拉和抗折强度,但脆性也相应提高。钢纤维增强增韧作用、纳米矿粉微填充及促进水化作用共同改善了混凝土的力学性能。  相似文献   

8.
在自密实混凝土中加入能起到增加强度和抵抗裂缝发展的钢纤维,从而形成一种新型复合材料,即成为钢纤维自密实混凝土。其克服了自密实混凝土的脆性问题,能有效提高混凝土强度和韧性。通过弯曲梁实验方法,分析研究了钢纤维不同尺寸、不同掺入率对自密实混凝土荷载位移曲线的影响,从而可进一步分析确定自密实混凝土中掺入钢纤维的尺寸类型和掺入量。  相似文献   

9.
在已有单掺钢纤维和合成纤维混凝土的研究基础上,研究了聚乙烯醇纤维(PVA)和钢纤维混杂,及两种不同参数钢纤维混杂的增韧、增强效果。结果表明,相对于单掺纤维,不同纤维混杂可使混凝土的弯曲强度及弯曲韧性明显提高,荷载作用下混凝土弯曲荷载-挠度曲线的下降段明显变缓,应变硬化现象更为明显,混杂纤维可以产生协同增强效应。  相似文献   

10.
通过引入不同型号和掺呈的钢纤维.着重研究其对C25地坪混凝土工作性能,力学性能、弯曲韧性和抗冲击性能的影响规律和作用机理.试验结果表明:不同型号钢纤维对地坪钢纤维混凝土的工作性能影响不同,在同一型号钢纤维下随着掺量增加地坪钢纤维混凝土的工作性能降低;相对不掺入钢纤维的地坪混凝土,掺入钢纤维后地坪钢纤维混凝土抗压强度均略有下降,但抗折强度都能提高50%以上,弯曲韧性和抗冲击性能也都可得到显著改善:掺量对地坪钢纤维混凝土抗折强度、弯曲韧性和抗冲击性能的影响不明显.通过试验结果综合分析,C25地坪钢纤维混凝土选用CW07型钢纤维,掺量在20-30 kg/m3较为合适.  相似文献   

11.
通过混杂钢纤维二级配混凝土的三点切口梁断裂试验,研究不同钢纤维体积掺量(0.5%,0.8%,1.0%,1.2%)、不同钢纤维长度(30mm,60mm)混杂使用以及水灰比对钢纤维二级配混凝土的P-CMOD曲线、起裂韧度、失稳韧度和断裂能的影响,并基于损伤力学理论,建立混杂钢纤维混凝土断裂损伤弯拉应力-应变关系。结果表明:掺入钢纤维的二级配混凝土相比于基体混凝土延性更好;不同长度钢纤维混杂使用对二级配混凝土的断裂韧度和断裂能有不同影响,试验范围内,钢纤维二级配混凝土断裂韧度提升最佳的优化组合为钢纤维掺量1.2%、长纤维占比50%、水灰比0.58;断裂能提升最佳的优化组合为钢纤维掺量1.2%、长纤维占比65%、水灰比0.33;文中建立的混杂钢纤维二级配混凝土弯拉应力-应变模型与试验结果吻合较好。  相似文献   

12.
探讨了不同体积掺量钢纤维和镀铜钢纤维对混凝土动态力学性能的影响,以及标定本构模型参数对钢纤维混凝土和镀铜钢纤维混凝土的适用性。在高强混凝土中掺加0.5%、1%、1.5%体积掺量的钢纤维制备7组试件,分别进行静态力学性能试验和分离式霍普金森压杆试验(SHPB),基于静态、动态力学结果修正Holmquist-Johnson-Cook(HJC)本构模型参数,并利用有限元分析软件验证HJC模型参数的有效性。结果表明,在0.5%、1%、1.5%体积掺量下,混凝土动态峰值抗压强度随纤维掺量的增加而提高。标定的HJC模型对钢纤维混凝土的动态峰值抗压强度预测效果良好,模拟得到的应力-应变曲线与SHPB试验结果大致吻合。以侵蚀准则模拟得到动态冲击试验试件破坏过程,为钢纤维混凝土的抗冲击设计提供参考。  相似文献   

13.
为了解决型钢混凝土组合结构的施工难题,利用离散的钢纤维代替传统钢筋笼,提出了型钢-钢纤维混凝土组合结构。以截面类型、钢纤维掺量、界面锚固长度和钢纤维混凝土保护层厚度为设计参数,进行了36个型钢-钢纤维混凝土试件的标准推出试验,研究了试件的受力性能,对破坏形态进行了统计归类,完成了损伤破坏全过程分析。试验结果表明:自由端与加载端的荷载-滑移关系并不同步,自由端先于加载端达到屈服;黏结劈裂裂缝首先出现在保护层厚度最小的钢纤维混凝土表面,然后由外向内发展,而黏结裂缝以型钢翼缘肢尖处为起点,沿45°斜向由内向外发展,直至达到钢纤维混凝土外表面;试件的破坏形态可分为黏结劈裂破坏、黏结锚固破坏、过渡破坏和型钢屈服破坏4种类型;型钢与钢纤维混凝土之间的黏结作用主要依靠化学胶结力、摩擦力和机械咬合力,推出试验的黏结滑移全过程可精细化地分为5个阶段和5个极限状态。  相似文献   

14.
常虹  沈鹏  谷复光 《混凝土》2020,(4):67-69
能量桩的主要作用是承载和地源热泵,如何在确保不影响承载力的前提下提高能量桩换热效率。在混凝土中掺入不同体积率的钢纤维,测试混凝土的抗压能力和导热系数,研究钢纤维对混凝土性能的影响。试验结果表明,钢纤维的掺入对混凝土的抗压强度以及导热系数都有提升,对抗压强度的提升为13%~30%,对导热性能的提升为4%~25%,钢纤维掺入量为0.6%时为能量桩的最优配合比。  相似文献   

15.
地铁工程中钢纤维混凝土配合比设计试验研究   总被引:6,自引:0,他引:6  
杨德建 《混凝土》2007,(4):90-94
通过研究钢纤维的掺量、膨胀剂以及钢纤维的品种和形状等原材料的选择和配合比设计参数的选择对C30混凝土性能的影响,测试了钢纤维混凝土的工作性能、抗压和抗折强度以及不同龄期的干缩.针对南京地铁工程某些特殊部位,提出了合适的配合比设计参数,有利于提高地铁工程混凝土耐久性、延长了地铁结构的使用寿命.  相似文献   

16.
针对钢纤维混凝土离心成型时各工艺参数的确定进行系列试验研究。通过对离心成型环形截面钢纤维混凝土试件的切片试验,研究离心时间、离心加速度、粗骨料级配、钢纤维的长度和体积率等因素对钢纤维在构件横截面、纵截面的分布形态的影响规律,确定了将离心成型钢纤维混凝土应用于输变电线路电杆时的各参数取值范围,为工程应用提供科研依据。  相似文献   

17.
赵浩 《山西建筑》2014,(21):149-150
依据钢纤维混凝土路面施工技术的现状,深入分析了钢纤维混凝土的配比,并对钢纤维混凝土在搅合、运输、振捣与养护等环节的施工技术措施进行了论述,以提高路面的施工质量,确保公路工程的安全运行。  相似文献   

18.
The bond behavior between fiber reinforced concrete and 20-mm reinforcing steel rebars was evaluated under elevated temperatures. Fifty modified pullout specimens (100×100×400 mm) were prepared using high strength concrete with basalt aggregate and different volumetric mixtures of three types of fibers, namely brass-coated steel fibers, hooked steel fibers, and high modulus polypropylene fibers, before being cured for 28 days at 40 °C. Specimens, designated for heat-treatment, were then subjected to elevated temperatures, ranging from 350 to 700 °C, whereas unheated (control) ones were left in laboratory air. The overall response of control and heat-damaged specimens, pulled out up to failure, and cracking extent and continuity were described. Standard cubes (100 mm3) were cast, cured, and heat treated under similar conditions, then tested to evaluate compressive and splitting strengths. The results showed marked reductions in residual compressive, splitting and steel–concrete bond under high temperatures with dramatic changes in bond stress–free-end slip trend behavior. Use of fibers minimized the damage in steel–concrete bond under elevated temperatures and hence the reduction in bond strength. Specimens which incorporated hooked steel fibers attained the highest bond resistance against elevated temperatures followed, in sequence, by those prepared with the mixture of hooked and brass-coated steel, the mixture of hooked steel and polypropylene, and brass-coated steel fibers. Statistical models for bond stress versus free-end slip and bond strength versus exposure temperature were developed. These showed excellent agreement with the trend behavior of present experimental data.  相似文献   

19.
刘亚东 《山西建筑》2007,33(15):167-168
在对钢纤维增强聚合物改性混凝土力学试验的基础上,对不同聚合物掺量对钢纤维混凝土的改善作用进行了比较,并对其机理进行了分析,以提高混凝土的抗拉、抗折强度及承载力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号