首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
共混复合型导电高分子材料研究进展   总被引:1,自引:0,他引:1  
介绍了复合型导电高分子材料的概念及特点,重点讨论了共混复合型导电高分子材料的制备方法和影响共混复合型导电高分子材料导电性的主要因素。并对当前共混复合型导电高分子材料的应用及发展趋势作了简要介绍。  相似文献   

2.
本征导电复合高分子材料的研究与进展   总被引:3,自引:0,他引:3  
本征导电高分子ICP是由普通高分子复合而成的一类新型材料。本文对其导电机理、应用价值及最新技术作了简要的介绍,并且对其共混的方法进行了综述。  相似文献   

3.
介绍了复合型导电高分子的特性、共混和填充复合型导电高分子的制备方法、开发现状及其技术进展。  相似文献   

4.
介绍了复合型导电高分子的特性、共混和填充复合型导电高分子的制备方法、开发现状及其技术进展.  相似文献   

5.
介绍抗静电高分子材料的研究概况。重点阐述目前提高高分子材料抗静电性能采取的主要方法:添加抗静电剂法、与结构型导电高分子材料共混法和添加导电填料法。分析了这些方法改进高分子材料的抗静电性能的特点,并介绍其应用情况。指出抗静电高分子材料的发展趋势。  相似文献   

6.
复合型导电高分子   总被引:4,自引:0,他引:4  
介绍了复合型导电高分子的特性、共混和填充复合型导电高分子的制备方法、开发现状及其技术进展。指出了它们的研究方向和应用前景。  相似文献   

7.
抗静电高分子复合材料研究进展   总被引:11,自引:3,他引:11  
介绍抗静电高分子复合材料的研究概况,重点阐述目前提高高分子材料抗静电性能所采取的4种主要方法:添加导电填料法、添加抗静电剂法、与结构型导电高分子材料共混法和涂层法。分析了这些方法改进高分子材料的抗静电性能的特点,并介绍其应用情况。指出抗静电高分子复合材料的发展趋势。  相似文献   

8.
产品开发     
正复合型导电高分子材料成研发热点复合型导电高分子材料由于导电性、稳定性、加工性等方面具有明显优势,成为研究开发热点,是一种发展迅速、应用广泛的导电材料。复合型导电高分子材料主要有:(1)共混复合型导电高分子材料:①聚苯胺复合材料;②聚吡咯复合材料;③聚噻吩复合材料。(2)填充复合型导电高分子材料:①碳系填充型导电高分子材料;②金属填充型导电高分子材料;③金属氧化物填充型导电高分子材料。复合型导电高分子  相似文献   

9.
对近两年国内外导电聚苯胺复合材料的研究进展分两部分进行综述,包括针对于其导电性和加工性的优化设计研究和导电聚苯胺在不同领域的新型应用研究。其优化改性分为无机掺杂和高分子共混两种。其应用研究集中在制作导电织物、电磁屏蔽材料、新型金属防腐涂料和装饰电极等。  相似文献   

10.
导电聚苯胺复合材料的研究进展   总被引:1,自引:0,他引:1  
曹友桂  章于川  郑广鹏 《广东化工》2012,39(2):84-84,56
文章对近两年国内外导电聚苯胺复合材料的研究进展分两部分进行综述,包括针对于其导电性和加工性的优化设计研究和导电聚苯胺在不同领域的新型应用研究。其优化改性分为无机参杂和高分子共混两种。其应用研究集中在制作导电织物、电磁屏蔽材料、新型金属防腐涂料和装饰电极等。  相似文献   

11.
Ion‐conductive plasticizers (ICP) composed of dibutyl phthalate (DBP) and butyl 2‐poly(ethylene glycol) phthalate (BPEGP)/lithium bisoxalato borate (LiBOB) were successfully synthesized. The composites blended of poly(vinyl chloride) (PVC) and ICP were fabricated in a Haake torque rheometer. FTIR, surface resistivity measurement, and mechanical test were used to investigate the comprehensive properties of the PVC/ICP composites. The results show that all the synthesized ICP can reduce the surface resistivity of the PVC/ICP composites to 105 Ω sq?1 orders of magnitude as the content of ICP reaches 50 phr. The increasing temperature enhances both the mobility of PEG molecular chains and the diffusion of lithium cations, and thus effectively improves the antistatic ability of the PVC/ICP compounds. With two exceptions of PVC/ICP compounds which include those made of PEG800 and PEG1000, the temperature dependence of the surface resistivity of PVC/ICP does not obey the Arrhenius relationship. The introduction of ICP into PVC matrix would improve the antistatic ability of the composites remarkably. Meanwhile, the mechanical properties of the composites are reduced to some reasonable extent. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
This study presented influence of mixing technique as well as filler content on physical and thermal properties of bovine bone‐based carbonated hydroxyapatite (CHA)/poly(lactic acid) (PLA) composites. CHA/PLA composites at various contents of CHA were prepared by either melt‐mixing or solution‐mixing techniques. Thermal properties, morphologies, and mechanical properties of the CHA/PLA composites including molecular weight deterioration of PLA matrices were investigated. Average molecular weights of PLA in the composites prepared by both techniques decreased with increasing CHA content, whereas their molecular weight distributions (MWDs) increased. Nonetheless, average molecular weights of PLA in melt‐mixed composites were lower than those of solution‐mixed composites. With increasing CHA content, elongation at break, tensile strength, and impact strength of the composites were decreased, whereas the tensile moduli of the composites were increased. In comparison between two mixing techniques, the melt‐mixing distributed and dispersed CHA into PLA matrix more effectively than the solution‐mixing did. Therefore, tensile moduli, tensile strength, and impact strength of the melt mixed composites were higher than those of the solution‐mixed composites of the corresponding CHA content. Moreover, decomposition temperatures and % crystallinity of the melt‐mixed composites were higher than those of the solution‐mixed composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

13.
基于熔融共混法,分别采用双转子连续混炼挤出机和同向啮合双螺杆挤出机制备了20 %玻璃纤维增强聚丙烯(GFRPP)复合材料,并对制备出的GFRPP复合材料中玻璃纤维残存长度及其力学性能进行了相应表征,在此基础上探讨了具有不同混炼特性的混炼设备结构对GFRPP复合材料中玻璃纤维残存长度及其力学性能的影响。结果表明,GFRPP复合材料的力学性能随玻璃纤维残存长度的增加而明显提高;双转子连续混炼挤出机相对于同向啮合双螺杆挤出机更有利于保留长玻璃纤维,同时适当减弱双转子连续混炼挤出机的转子的分散混合能力,降低转子转速,有利于提高玻璃纤维的残存长度,制备出更高性能的GFRPP复合材料。  相似文献   

14.
采用干法和湿法两种混炼工艺制备了螺旋纳米碳纤维(HCNFs)/炭黑(CB)/天然橡胶(NR)复合材料,通过扫描电镜、拉伸试验机和应变扫描仪分别对所制备复合材料的界面形貌、力学性能和Payne效应进行了测试分析,考察了混炼方式对复合材料宏观力学性能及Payne效应的影响。结果表明,与纯CB填料相比,在干湿两种混炼方式下,添加适量的HCNFs(1~6份)能提高HCNFs/CB/NR复合材料的300%定伸应力、扯断伸长率、拉伸强度和硬度。与干法混炼相比,湿法混炼能明显增强HCNFs/CB/NR复合材料的Payne效应,并提升在HCNFs高添加量(2~6份)条件下的拉伸强度和扯断伸长率,这主要源于湿法混炼能够有效改善HCNFs在橡胶基质中的分散性。  相似文献   

15.
陈星运  贺江平  舒远杰 《化工进展》2011,30(6):1306-1312
分别采用低温固化剂和高温固化剂制备了纳米石墨片/环氧树脂复合材料。通过电阻测试仪和材料试验机研究了纳米石墨片的含量对复合材料导电性能和力学性能的影响规律,并将溶液混合法与直接混合法制备的复合材料的性能进行对比,同时比较了纳米复合材料的性能与微粉石墨/环氧树脂复合材料的性能。结果表明,溶液混合法制备的复合材料逾渗阈值更低,可得到填料质量分数达60%、体积电阻率为0.0085 Ω·cm的纳米复合材料。当填料质量分数高于4%时,纳米复合材料的力学性能低于微粉复合材料。  相似文献   

16.
Nylon6 (PA6)/Ethylene-(vinyl acetate) (EVA)/carbon black (CB) composites with different electrical conductivity were prepared in an internal mixer. The factors influencing the electrical conductivity of the ternary composites were investigated, including mixing mode, mixing time and mass ratio of PA6 and EVA, and so on. Among three kinds of PA6/EVA/CB composites, including ones prepared by directly mixing (composites A), EVA and CB were mixed prior to melt-compounding with PA6 (composites B) and PA6 and CB were mixed prior to melt-compounding with EVA (composites C), the mixing time only significantly influenced the electrical conductivity of composites A. Good conductivity of the composites could be realized because the distance between CB particles became closer with the increasing of mixing time. However, the mixing time has no effect on the electrical properties of the composites B and the composites C, due to there were no CB particles migrated phenomenon happened. Scanning electron microscopy (SEM) was used to assess the fracture surface morphologies and the dispersion of the CB particles. The results showed that the dispersion of the CB particles significantly affects the electrical conductivity of the composites. Based on the study of the influence of various mass ratios of EVA and PA6 on the morphologies and electrical properties of PA6/EVA composites filled with 10 phr (parts per hundred resins) CB particles, we suggested that the mass ratio of EVA and PA6 affected the volume resistivity of the ternary composites significantly. In addition, the composites were almost insulation when the mass ratios of EVA and PA6 were 80/20 and 70/30, while the composites became conductivity with the mass ratio of EVA and PA6 higher than 60/40. The PA6/EVA/CB composites which CB particles locate at the interface of EVA and PA6 have the lowest volume resistivity when the mass ratio of two components was 60/40.  相似文献   

17.
The morphology, tensile, impact properties, and thermal expansion behavior of polycarbonate (PC)/acrylonitrile‐styrene‐butadiene (ABS)/talc composites with different compositions and mixing sequences were investigated. From the studies of morphology of the PC/ABS/talc composites, it was observed that some talc particles were located in both the PC and the ABS phases of the blend but most were at the interface between the PC and ABS phases for every mixing sequence. Aspect ratios of the talc particles determined by TEM image analysis reasonably matched values computed from tensile modulus using composite theory. The thermal expansion behavior, or CTE values, was not significantly influenced by the mixing sequence. The impact strength of the PC/ABS/talc composites depended significantly on the mixing sequence; a premix with PC gave the poorest toughness. The molecular weight of the PC in PC/talc composites was found to be significantly decreased. It appears that the impact strength of the PC/ABS/talc composites is seriously compromised by the degradation of the PC caused by talc. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
高比表面积的MnO_x-CeO_2材料的合成   总被引:1,自引:0,他引:1  
采用具有有序孔道的介孔氧化硅材料KIT-6为分散剂,利用双溶剂的合成方法,制备了具有高比表面积的MnOx-CeO2复合材料。利用XRD、N2吸附-脱附、ICP、扫描电镜、透射电镜、电子衍射和EDS等方法表征了材料的结构和形貌。研究结果表明:此方法能够合成出比表面积为158m2/g的MnOx-CeO2复合材料。  相似文献   

19.
In this study, the electrical and thermal conductivity of polyether ether ketone (PEEK)/carbon nanotubes (CNTs) with different types, namely whisker CNTs (Wh-CNTs) and conventional CNTs were compared. PEEK/CNTs composites were melt mixed in PEEK via two screw extrusion technology. Moreover, the effects of different methods for mixing of PEEK/Wh-CNTs, namely, dry mixing, wet mixing and melt mixing, were compared. The electrical and thermal properties were analyzed. A high thermal conductivity value of about 0.741 W/(m K) could be obtained upon loading with 10 wt% Wh-CNTs and the PEEK/Wh-CNTs composites had low volume resistivity value of 10.96 Ω cm at 10 wt% loading via melt mixing. Thermal conductivity values of 1.066 W/(m K) (out-of-plane) and 1.50 W/(m K) (in-plane) were achieved with 10 wt% loading by wet mixing. Experimental results of out-of-plane thermal conductivity were more consistent with the Nan model. PEEK/Wh-CNTs composites prepared by wet mixing exhibited higher thermal conductivity than the composites mixed using the two other methods. As the content of Wh-CNTs in wet mixed PEEK/Wh-CNTs nanocomposites increased, electromagnetic interference (EMI) shielding effectiveness (SE) was improved. The PEEK/Wh-CNTs composites were 0.6 mm thick and showed an EMI SE of 21.5 dB.  相似文献   

20.
Wollastonite-reinforced polypropylene composites were prepared by using tri-screw dynamic compounding extruder and the effect of screw elements combination on the mechanical performance of polypropylene/wollastonite composites was investigated. The results showed that turbine mixing elements are beneficial to distribution mixing and the effect of interleaved arrangement is better than that of continuous arrangement. Compared with the other two screw configurations, interleaved arrangement of turbine mixing elements can effectively modify the distribution and orientation of wollastonite in matrix and compatibility between wollastonite and polypropylene matrix. Accordingly, there is an improvement in the mechanical properties of composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号