首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the effect of local indentation/impact damage on the bearing capacity of foam core sandwich beams subjected to edgewise compression. The considered damage is in a form of through-width zone of crushed core accompanied by a residual dent in the face sheet. It is shown that such damage causes a significant reduction of compressive strength and stiffness of sandwich beams. Analytical solutions estimating the Euler’s local buckling load are obtained for two typical modes of damage. These solutions are validated through experimental investigation of three sandwich configurations. The results of the analytical analysis are in agreement with the experimental data.  相似文献   

2.
Sandwich composite are used in numerous structural applications, with demonstrated weight savings over conventional metals and solid composite materials. The increasing use of sandwich composites in defense structures, particularly those which may be exposed to shock loading, demands for a thorough understanding of their response to suc highly transient loadings. In order to fully utilize their potential in such extreme conditions, design optimization of the skin and core materials are desirable. The present study is performed for a novel type of sandwich material, TRANSONITE® made by pultrusion of 3-D woven 3WEAVE® E-glass fiber composites skin preforms integrally stitched to polyisocyanurate TRYMERTM 200L foam core. The effect of core stitching density on the transient response of three simply supported sandwich panels loaded in a shock tube is experimentally studied in this work. The experimental program is focused on recording dynamic transient response by high-speed camera and post-mortem evaluation of imparted damage. The obtained experimental results reveal new important features of the transient deformation, damage initiation and progression and final failure of sandwich composites with unstitched and stitched foam cores. The theoretical study includes full 3-D dynamic transient analysis of displacement, strain and stress fields under experimentally recorded surface shock pressure, performed with the use of 3-D MOSAIC analysis approach. The obtained theoretical and experimental results for the transient central deflections in unstitched and two stitched foam core sandwiches are mutually compared. The comparison results reveal large discrepancies in the case of unstitched sandwich, much smaller discrepancies in the case of intermediate stitching density, and excellent agreement between theoretical and experimental results for the sandwich with the highest stitching density. The general conclusion is that further comprehensive experimental and theoretical studies are required in order to get a thorough understanding of a very complex behavior of composite sandwiches under shock wave loading.  相似文献   

3.
A plastic micro buckling approach is investigated in order to see whether it can be used to analytically predict the residual strength of carbon fiber sandwich structures.

A parametric study on impact damage resistance and residual strength of sandwich panels with carbon fiber-vinylester faces and PVC foam core is conducted. Two sandwich configurations are studied. The first configuration consists of thin faces and an intermediate density core, representative of a panel from a superstructure. The second configuration consists of thick faces and a high density core, representative of a panel from a hull. Two different impactor geometries are used. One spherical impactor and one pyramid shaped impactor are used in a drop weight rig to inflict low velocity impact damage of different energy levels in the face of the sandwich.

The damages achieved ranges from barely visible damages to penetration of one face. Residual strength is tested using in-plane compression of the sandwich plates either instrumented with strain gauges or monitored with digital speckle photography.  相似文献   


4.
The work described herein is part of a larger context in which the effect of damage in sandwich composite structures for marine applications has been investigated. The overall aim of this effort has been twofold: to develop and verify existing damage assessment models to be used to assess the effect of damage on marine sandwich structures, and to develop a damage assessment scheme to be used by shipyards, ship owners and navies.More specifically, this paper presents a sub-set of this overall effort looking at impact and indentation damage and its effect on the load carrying capacity of state-of-the-art carbon composite sandwich panels for marine applications. Damage types are modelled based on physical observations from tests. Testing is then performed on different scales in order to validate the models. The overall aim is to use such models to produce information that can be used for decision-making at two levels. The first is to evaluate the damage tolerance of ship structural components and thus to calculate the size and extent of damage that a component can have without risk of growth or failure at ultimate local or global loads on the entire ship. The second is to have information at hand to decide if, and when, a structural part needs to be repaired if damage has been detected. A scheme developed for this purpose is presented herein. Finally the paper will briefly describe a common framework for damage assessment in composite sandwich structures. Herein, models are used in conjunction with the design specifics and functional requirements to create a scheme for repair decisions.  相似文献   

5.
6.
A key objective dealing with 3D sandwich structures is to maximize the through-thickness stiffness, the strength of the core and the core to faces adhesion. The Napco® technology was especially designed for improving such material properties and is under investigation in this paper. In particular, the potential of the process is characterized using a micromechanical modelling combined to a parametric probabilistic model. An experimental analysis is further detailed and validates the theoretical estimates of the core-related elastic properties. It is readily shown that the technology is able to produce parts with significantly improved mechanical properties. Finally, thanks to the probabilistic aspect of the modelling, the study allows to establish a link between the randomness of the process and the uncertainties of the final mechanical properties. Thus, the present approach can be used to optimize the technology as well as to properly design structures.  相似文献   

7.
Metallic sandwich structures with aluminium foam core are good energy absorbers for impact protection. To study their ballistic performance, quasi-static and impact perforation tests were carried out and the results are reported and analysed in this paper. In the experiments, effects of several key parameters, i.e. impact velocity, skin thickness, thickness and density of foam core and projectile shapes, on the ballistic limit and energy absorption of the panels during perforation are identified and discussed in detail.  相似文献   

8.
This paper describes a series of tests focused on the combination of structural loading (bending, shear) and simultaneous penetrating impact on sandwich panels with thin GFRP face-sheets, with emphasis on the specific damage morphologies and developments depending on the type and magnitude of structural loading. The test specimens were sandwich panels, length 250 mm and width 150 mm, with carbon fibre prepreg face-sheets ([0°/90°], thickness tf ≅ 0.5 mm) bonded to the faces of a foam core (density 80 kg/m3, thickness H = 10 mm). The impact velocity was approximately 420 m/s, using a spherical steel impactor, diameter 10 mm, with a mass of 4.1 g. A high-speed camera was used for registration of panel response. It was demonstrated, that, at preload levels above a specific limit, the impact would cause catastrophic failure, i.e., complete or near-complete loss of structural load carrying capacity. Developments of failure morphology, consistent with the observed evidence, were derived and outlined.  相似文献   

9.
The distributions of properties across the thickness (core) and in the plane (face sheets) that minimise the interlaminar stresses at the interface with the core are determined solving the Euler–Lagrange equations of an optimisation problem in which the membrane and transverse shear energy contributions are made stationary. The bending stiffness is maximised, while the energy due to interlaminar stresses is minimised. As structural model, a refined zig-zag model with a high-order variation of displacements is employed. Simplified, sub-optimal distributions obtainable with current manufacturing processes appear effective for reducing the critical interfacial stress concentration, as shown by the numerical applications.  相似文献   

10.
Titanium and carbon fibre pins have been inserted into the polymethacrylimide foam core of a sandwich panel (with carbon fibre face sheets) in order to increase the through-thickness strength. The elevation in compressive strength has been measured both quasi-statically and dynamically using a direct Kolsky bar, and the sensitivity of strength to the relative density and thickness of foam have been determined. An X-ray CAT scan machine was used to examine the deformed shape of the pins during interrupted compression testing of the sandwich specimens. It was found that the foam core stabilises the pins against elastic buckling, and the pin-reinforced core has a strength and energy absorption capacity in excess of the individual contributions from the foam and unsupported pins. It is shown that the compressive strength is governed by elastic buckling of the pins, with the foam core behaving as an elastic Winkler foundation in supporting the pins. The peak strength of the pin-reinforced core is increased by a factor of about four when the speed of loading is increased from the quasi-static rate of about 10−6 ms−1 to the dynamic value of 10 ms−1; it is concluded that the micro-inertia of the pins stabilises them against elastic buckling and leads to the observed elevation in strength.  相似文献   

11.
Aluminium foam core sandwich panels are good energy absorbers for impact protection applications, such as light-weight structural panels, packing materials and energy absorbing devices. In this study, the high-velocity impact perforation of aluminium foam core sandwich structures was analysed. Sandwich panels with 1100 aluminium face-sheets and closed-cell A356 aluminium alloy foam core were modelled by three-dimensional finite element models. The models were validated with experimental tests by comparing numerical and experimental damage modes, output velocity, ballistic limit and absorbed energy. By this model the influence of foam core and face-sheet thicknesses on the behaviour of the sandwich panel under impact perforation was evaluated.  相似文献   

12.
探索了全厚度缝合复合材料闭孔泡沫芯夹层结构低成本制造的工艺可行性及其潜在的结构效益。选用3 种夹层结构形式, 即相同材料和工艺制造的未缝合泡沫芯夹层和缝合泡沫芯夹层结构及密度相近的Nomex 蜂窝夹层结构, 完成了密度测定、三点弯曲、平面拉伸和压缩、夹层剪切、结构侧压和损伤阻抗/ 损伤容限等7 项实验研究。结果表明, 泡沫芯夹层结构缝合后, 显著提高了弯曲强度/ 质量比、弯曲刚度/ 质量比、面外拉伸和压缩强度、剪切强度和模量、侧压强度和模量、冲击后压缩(CAI) 强度和破坏应变。这种新型结构形式承载能力强、结构效率高、制造维护成本低, 可以在飞机轻质机体结构设计中采用。   相似文献   

13.
Sandwich panels constructed from metallic face sheets with the core composed of an energy absorbing material, have shown potential as an effective blast resistant structure. In the present study, air-blast tests are conducted on sandwich panels composed steel face sheets with unbonded aluminium foam (Alporas, Cymat) or hexagonal honeycomb cores. Honeycomb cores with small and large aspect ratios are investigated. For all core materials, tests are conducted using two different face sheet thicknesses. The results show that face sheet thickness has a significant effect on the performance of the panels relative to an equivalent monolithic plate. The Alporas and honeycomb cores are found to give higher relative performance with a thicker face sheet. Under the majority of the loading conditions investigated, the thick core honeycomb panels show the greatest increase in blast resistance of the core materials. The Cymat core panels do not show any significant increase in performance over monolithic plates.  相似文献   

14.
A novel method for the in-situ repair of composite sandwich structures using microvascular networks and cyanoacrylate (CA) adhesive systems has been presented. Upon a damage event, the vascules become ruptured, providing a route for the introduction of adhesive directly into the damage site. The efficacy of the two repair agents was first assessed under static and fatigue conditions using a modified double cantilever beam (DCB) method. Once baseline fracture behaviour of the cyanoacrylates has been established, they were further assessed by injection into a series of pre-damaged T-joint specimens. The presence of the vasculature was shown to have no detrimental impact on mechanical performance, whilst both of the cyanoacrylates were shown to be highly effective in the recovery of stiffness and ultimate strength of the T-joint specimens.  相似文献   

15.
The paper presents the similarity analysis of a sandwich unidirectional panel with a transversely flexible core under buckling loads. The governing equations are those used in the high-order analysis of sandwich panels with a ‘soft’ core. The study derives the similitude conditions in the case of external in-plane compressive loads that yield buckling of the panel with and without imperfections. In the first part, the buckling analysis is presented and it is based on the linearized version of the governing equations of the non-linear geometrical bending equations. The presentation includes an analytical proof of the applicability of similarity for the buckling of a sandwich panel with identical faces and a numerical demonstration of the response when full similarity and partial similarity exist. The effects of full and partial similarity are presented for a panel with imperfections.  相似文献   

16.
As a thermal management system, a sandwich construction was developed to have both superior thermal conductivity and structural integrity. The sandwich construction consists of a carbon foam core and unidirectional graphite/epoxy composite facesheets. An emphasis was put on enhancing the thermal conductivity of each phase of sandwich construction as well as interface between the phases. A commercially-available carbon foam was characterized mechanically and thermally. Property variation and anisotropy were observed with the highly conductive graphitic carbon foam. Co-curing of the composite facesheets with the carbon foam core was demonstrated to minimize the thickness of the adhesive layer between the facesheets and the core to produce the best construction of those tested. Comparison made with an adhesively bonded specimen shows that the co-curing is a more efficient method to enhance the through-thickness conductivity. Parametric studies with an analytic model indicate that degree of enhancement in the overall through-thickness conductivity of the sandwich construction from the enhancement of each component including the foam core, facesheet and the bonding methods.  相似文献   

17.
After highlighting the improvement of the mechanical performances involved by transverse reinforcement implementation in previous several studies, the mechanical behavior of stitched sandwich structures is analytically approached in this paper. The final purpose of this work is a modeling of the elastic performances of these structures. To predict the in-plane behavior, the classical theory of sandwiches is adapted and used by treating the foam core strengthened by stitches as a homogenized volume. This approach leads to the creation of an orthotropic equivalent core material. Its elastic properties depend on each component and their volume participation. The comparison between simulated and experimental values is quite good. The main interest of the multi-scale approach concerns a predictive tool. Indeed, it becomes realistic to obtain the elastic properties of stitched sandwich according to the geometrical parameters of the stitches and the mechanical properties of the components.  相似文献   

18.
The purpose of this study is to improve the mechanical performance of the foam core sandwich composites with a rather simpler method of core reinforcement. With this aim; sandwich composite panels are manufactured using only-perforated foam and perforated-stitched foam as the core with multi-axial glass fabrics as the facesheet materials by vacuum infusion method using epoxy resin. Sandwich composites with perforated core, stitched core and plain core have been compared in terms of compressive, bending, shear and impact performances. It was seen that newly proposed perforated core specimens and stitched core specimens with relatively insignificant weight increase have superior mechanical performances than plain core specimens. Thus reinforcing foam core with perforation and stitching is proposed as simpler but very effective method in performance improvement for the sandwich composites.  相似文献   

19.
The finite element based design tool, CODAC, has been developed for efficiently simulating the impact behavior of sandwich structures consisting of two composite face sheets and a compliant core. To achieve a rapid and accurate stress analysis, three-layered finite shell elements are used. A number of macromechanical damage models are implemented to model damage onset and damage growth.

The transient impact analysis is assessed via an experimental impact test program on honeycomb sandwich panels. Force–time histories and damage sizes are examined. The influence of distinct damage and degradation models on the impact response is analyzed. Results show that the presented time-efficient methodology is capable of accurately modeling core failure behavior and rapidly simulating low-velocity impacts which induce barely visible damage.  相似文献   


20.
The buckling and postbuckling responses of cylindrical sandwich panels, subjected to non-uniform in-plane loadings are investigates in this paper by analytical method. A fourth and fifth order expansions are used respectively for the transverse and tangential displacement of the core to model the core compressibility effect. The stress distribution within the panels due to the applied non-uniform in-plane edge loadings are determined by prebuckling analysis. The governing partial differential equations describing the buckling and postbuckling behavior of cylindrical sandwich panels are derived using the principle of minimum total potential energy. Galerkin’s method is used to reduce the governing partial differential equations to a set of non-linear algebraic equations. Newton–Raphson method in conjunction with Riks approach is employed to solve the algebraic equations. Numerical results are presented for both flat and cylindrical sandwich panels subjected to various non-uniform in-plane edge loadings. The sandwich panels used in the present investigation are made up of isotropic and composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号