首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对TSP问题,结合离散粒子群算法和差分进化算法各自的特点,提出了基于差分进化的离散粒子群算法。该算法先利用差分进化算法的变异、选择算子产生新的群体,再通过离散粒子群算法和交叉及选择算子进行局部搜索。通过对标准的30个城市进行实验,实验结果表明,该优化算法在求解TSP问题上有很好的性能。  相似文献   

2.
离散粒子群优化算法求解旅行商问题   总被引:1,自引:0,他引:1       下载免费PDF全文
在优化领域,粒子群算法适用于求解连续优化问题,而在离散优化上的应用还相对较少。本文在介绍基本粒子群优化算法的基础上,分析了粒子群优化算法在经典旅行商问题 中的应用性能及粒子群算法求解旅行商问题的相关操作。使用Ulysses等标准TSP测试数据进行了相关实验,并通过不同的参数设置对实验结果进行了性能分析和比较。  相似文献   

3.
粒子群优化算法(PSO)是Eberhart和Kennedy提出的,该算法具有思想简单、易编程实现等特点,引起了国内外相关领域众多学者的关注。本文以旅行商问题为例,提出一种离散粒子群优化算法,对粒子的位置、速度等量及运算规则进行定义,并在迭代过程中对速度引入收缩因子。实验结果表明,该算法具有很好的性能。  相似文献   

4.
求解TSP问题的自逃逸混合离散粒子群算法研究   总被引:3,自引:0,他引:3  
通过对旅行商问题(TSP)局部最优解与个体最优解、群体最优解之间的关系分析,针对DPSO算法易早熟和收敛慢的缺点,重新定义了离散粒子群DPSO的速度、位置公式,结合生物界中物种在生存密度过大时个体会自动分散迁徙的特性和局部搜索算法(SEC)后,提出了一种新的自逃逸混合离散粒子群算法(SEHDPSO).自逃逸思想是一种确定性变异操作,能使算法中陷入局部极小区域的粒子通过自逃逸行为进行全局寻优,从而克服算法易早熟的缺陷.仿真结果表明,SEHDPSO算法比混合蚁群算法(ACS+2-OPT)具有更好的收敛性和搜索效率.  相似文献   

5.
求解TSP问题的伪贪婪离散粒子群优化算法   总被引:1,自引:0,他引:1  
以旅行商问题为例,提出一种基于元胞结构的伪贪婪离散粒子群优化算法.为了体现粒子对环境的感知能力,设计了伪贪婪的粒子位置修改操作算子,为了反映粒子间不同学习能力,体现粒子的个体差异性,设计了3种学习算子来提高算法的局部求精能力,为了更好地保持粒子群的多样性,采用了元胞结构作为粒子群的种群拓扑和邻城结构,这些策略使算法在空...  相似文献   

6.
旅行商问题(TSP)是运筹学、图论和组合优化中的NP难题。量子粒子群算法(QPSO)参数个数少、随机性强,并且能覆盖所有解空间,保证算法的全局收敛。针对TSP的特点,通过建立交换子、交换序的运算法则,对基本QPSO算法进行了改造,同时引入了遗传算法中的变异,提出一种求解TSP的改进QPSO算法。实验结果表明了该算法在解决TSP时的有效性,同时算法在稳定性、收敛性以及寻优能力上较其他的一些PSO算法有了很大的提高。  相似文献   

7.
陈建荣  陈建华 《计算机科学》2017,44(Z6):139-140, 160
针对典型离散优化问题旅行商问题,提出了一种离散捕鱼策略优化算法。结合TSP问题的特点,首先给出渔夫个体的离散编码方法,并在此基础上提出相异集和交换操作的基本概念;然后对渔夫个体之间的距离进行重新定义,并对渔夫个体的几种搜索策略进行重新描述;最后在TSPLIB标准库中选取3个算例对算法进行性能测试。数值仿真实验结果表明,对于求解TSP问题,离散捕鱼策略优化算法具有求解精度高、稳定性好、运行速度快等优点,为求解TSP问题提供了一种可行的新选择。  相似文献   

8.
求解TSP问题的模糊自适应粒子群算法   总被引:9,自引:0,他引:9  
由于惯性权值的设置对粒子群优化(PSO)算法性能起着关键的作用,本文通过引入模糊技术,给出了一种惯性权值的模糊自适应调整模型及其相应的粒子群优化算法,并用于求解旅行商(TSP)问题。实验结果表明了改进算法在求解组合优化问题中的有效性,同时提高了算法的性能,并具有更快的收敛速度。  相似文献   

9.
求解TSP的改进自组织PSO算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对粒子群算法(PSO)的早熟收敛现象,从种群多样性出发,基于自组织临界性特点改进PSO 算法的参数设置,采用自组织的惯性权重和加速系数,并增加了变异算子。借鉴交换子和交换序概念,设计出了能直接在离散域进行搜索的改进的自组织PSO算法。用于旅行商问题(TSP)的求解,并与基本及其他典型改进PSO算法进行性能比较。实验结果证实改进的自组织PSO算法是有效的。  相似文献   

10.
基于QPSO方法优化求解TSP   总被引:14,自引:0,他引:14  
针对粒子群优化算法PSO求解旅行商问题TSP收敛速度不够快的缺陷,提出利用量子粒子群优化算法QPSO求解TSP,在交换子和交换序概念的基础上,以Matlab语言为开发工具实现了TSP最佳路径的求解.实验表明改造QPSO算法用于优化求解14点的TSP,能够迅速得到最优解,收敛速度加快,搜索效率得到较大水平提高;QPSO方法在求解组合优化问题中将非常有效.  相似文献   

11.
旅行商问题(TSP)是组合优化问题的典型代表,针对TSP的求解提出一种离散型细菌觅食(DBFO)算法.该算法通过结合2-opt算法设计了一种适合处理离散型变量的趋化算子,将细菌觅食算法推广到了离散情形.同时,结合TSP的特点,在迁徙算子中引入基因库的思想来指导新个体的生成,提高了算法的搜索效率.通过对TSPLIB标准库中22个实例进行仿真实验.实验结果表明,该算法能够有效求解城市规模500以下的TSP,与混合蚁群算法和离散型萤火虫群算法相比,具有更好的全局收敛性和稳定性.  相似文献   

12.
基于局部优化策略求解TSP的蚁群算法*   总被引:4,自引:3,他引:4  
为了克服基本蚁群算法收敛速度慢、易于停滞的缺陷,提出了一种基于局部优化策略的蚁群算法(LOACA)。该算法根据TSP的特点,采用了三种局部优化算子来交换搜索路径中城市的位置,以改进解的质量。以TSP为例进行的实验结果表明,该算法优于ACA和ACAGA。  相似文献   

13.
针对基本粒子群(PSO)算法不能较好地解决旅行商优化问题(TSP),分析了基本粒子群算法的优化机理,在新定义粒子群进化方程中进化算子的基础上利用混沌运动的随机性、遍历性等特点,提出一种结合混沌优化和粒子群算法的改进混沌粒子群算法.该算法对惯性权重进行自适应调整,引入混沌载波调整搜索策略避免陷入局部最优,形成一种同时满足全局和局部寻优搜索的混合离散粒子群算法,使其适合解决TSP此类组合优化问题.利用MATLAB对其进行了仿真.仿真结果说明此算法的搜索精度、收敛速度及优化效率均较优,证明了此算法在TSP中应用的有效性,且为求解TSP提供了一种参考方法.  相似文献   

14.
建立低碳旅行商问题的数学模型LCTSP,并验证了模型的有效性。提出一种基于问题启发信息的离散粒子群算法。根据距离和载重信息设计一种新型离散个体生成算子,该算子对个体自身采用多元变异策略,保持个体的“惯性”,同时采用贪婪交叉策略实现个体与个体极值和全局极值之间的信息交互;基于优先卸货信息对个体极值进行局部搜索,调整种群跟踪对象,以快速跳出局部最优;度量种群同化程度,利用点插法和2-Opt算子对全局极值进行精细化搜索,增强挖掘能力,提高搜索精度,降低种群同化速度。将所提算法与6种代表性算法应用于一组不同规模的低碳旅行商问题中,结果表明,所提算法具有更高的求解精度。  相似文献   

15.
基于遗传算法求解TSP问题的一种算法   总被引:12,自引:1,他引:12  
TSP问题是一个经典的NP难度的组合优化问题,遗传算法是求解TSP问题的有效方法之一。利用交换启发交叉算子实现局部搜索加快算法的收敛速度和利用变换变异算子维持群体的多样性防止算法早熟收敛,给出了一种求解TSP问题的遗传算法。仿真实验结果表明了该算法的有效性和可行性。  相似文献   

16.
温度可控的求解TSP问题的模拟退火算法   总被引:3,自引:0,他引:3  
在现有求解 TSP 问题的模拟退火算法的基础上,通过引入新的两点算子以及利用fprintf()函数﹑fscanf()函数和全局变量的作用,提出了一种温度可控的模拟退火算法.对CHN144 以及标准的TSPLIB 中不同国家的城市的数据进行测试.测试结果表明,该算法很容易收敛到问题的最优解.  相似文献   

17.
在现有求解 TSP 问题的模拟退火算法的基础上,通过引入新的两点算子以及利用fprintf()函数﹑fscanf()函数和全局变量的作用,提出了一种温度可控的模拟退火算法。对CHN144 以及标准的TSPLIB 中不同国家的城市的数据进行测试。测试结果表明,该算法很容易收敛到问题的最优解。  相似文献   

18.
一种改进的遗传算法及其在TSP中的实现   总被引:4,自引:1,他引:4  
TSP问题是典型的NP完全问题,遗传算法是求解NP完全问题的一种方法。文章针对TSP问题.提出了一种改进的遗传算法。在遗传算法中引入进化算法的思想,在此基础上提出顶端培育策略和分阶段策略,以求在保证群体多样性的同时加快收敛速度。在算法的仿真和测试中,改进后的算法明显优于传统的遗传算法。这表明,该算法具有良好的可行性和实用性。  相似文献   

19.
主要研究了用遗传算法求解TSP问题.阐述了简单遗传算法的设计方法、基本原理和基本步骤.描述了简单遗传算法在TSP问题中的应用现状.根据种群个体的多样性和分布情况,提出了判定遗传算法的截止代数.简单遗传算法具有易于陷入局部最优解、收敛速度慢的特点,针对这些特点,通过改进交叉算子,加入初始化启发信息,提高了遗传算法解的精度和收敛性.  相似文献   

20.
基于Rank的进化算法解决多目标TSP问题   总被引:2,自引:0,他引:2       下载免费PDF全文
在现代物流应用中,典型的旅行商(TSP)问题是一个单目标优化问题,只反映了最短路程一个因素。将节点的时间窗作为成本损失计算在内,可其将转化为一个反映实际应用需求的多目标优化问题。本文在时间窗成本计算模型基础上,通过使用基于支配解的遗传算法进行优化,得出该问题的Pareto前沿,并通过实验表明了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号