首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In code division multiple access (CDMA) mobile radio systems, both intersymbol interference and multiple access interference arise which can be combated by using either elaborate optimum or favorable suboptimum joint detection (JD) techniques. Furthermore, the time variation of the radio channels leads to degradations of the receiver performance. These degradations can be reduced by applying diversity techniques. Using coherent receiver antenna diversity (CRAD) is especially attractive because only the signal processing at the receiver must be modified. In the present paper, the application of CRAD to the more critical uplink of CDMA mobile radio systems with suboptimum JD techniques is investigated for maximal-ratio combining. The authors study six different suboptimum JD techniques based on decorrelating matched filtering, Gauss-Markov estimation, and minimum mean square error estimation with and without decision feedback. These six suboptimum JD techniques which are well-known for single antenna receivers are extended for the application to CRAD. A main concern of the paper is the determining of the SNR performance of the presented JD techniques for CRAD and the achievable average uncoded bit error probabilities for the transmission over rural area, typical urban and bad urban mobile radio channels are determined  相似文献   

2.
The combination of code division multiple access(CDMA) and multicarrier (MC) transmission techniques,termed MC-CDMA, is considered a promising alternative toconventional DS (direct sequence)-CDMA. For this reason, recent research activities haveconcentrated on the application of MC-CDMA to mobileradio systems. In this paper an MC-CDMA concept which iswell suited for mobile radio applications is described. The described MC-CDMA concept overcomesdisadvantages of previously proposed concepts. InMC-CDMA mobile radio systems, signal reception isimpaired by time-varying multipath propagation. Theimpairments can be reduced by applying diversitytechniques. Coherent receiver antenna diversity (CRAD)is especially attractive because only the signalprocessing at the receivers must be modified. In thiscommunication, the application of CRAD in combination withjoint detection (JD) techniques to the more criticaluplink of MC-CDMA mobile radio systems is investigated.It is explained that the deployment of JD techniques for CRAD is an effective countermeasure againstthe influence of the mobile radio channel on the systemperformance. Four JD techniques for CRAD which areapplicable to MC-CDMA are presented. Their performances are studied in bad urban, typical urban, andtypical macrocellular environments. It is shown thatMC-CDMA allows a favorable performance compared to otherCDMA concepts.  相似文献   

3.
Due to time variant multipath propagation, both intersymbol interference and multiple access interference occur at CDMA receivers. These degrading effects can be combatted by joint detection (JD) techniques. In order to reduce the performance impairments resulting from time variance, coherent receiver antenna diversity (CRAD) can be used. In the present paper, a system model of CDMA mobile radio systems using various JD techniques in combination with CRAD shall be considered. This system model is an evolution of the pan-European GSM and takes important real world aspects such as imperfect channel estimation, nonlinear amplification and D/A and A/D conversion into account. The viability of JD with CRAD shall be demonstrated by bit error rate simulations of this system model. It is shown that by using JD with two receiver antennas in bad urban areas,E b/N0 < 8 dB per antenna is sufficient for a bit error rate of 10–2, andE b/N0 < 11 dB per antenna is required for a bit error rate of 10–3.List of Abbreviations AWGN Additive white Gaussian noise - A/D Analog-to-digital - BU Bad urban - CDMA Code division multiple access - COST European Co-operation in the Field of Scientific and Technical Research - CRAD Coherent receiver antenna diversity - cdf Cumulative distribution function - DMF Decorrelating matched filter - DMF-BDFE Decorrelating matched filter block decision feedback equalizer - D/A Digital-to-analog - EGC Equal-gain combining - FDMA Frequency division multiple access - GMSK Gaussian minimum shift keying - GSM Global System for Mobile Communications - ISI Intersymbol interference - JD Joint detection - JDC Japanese Digital Cellular - JD-CDMA Joint detection code division multiple access - MA Multiple access - MAI Multiple access interference - MMSE-BLE Minimum mean square error block linear equalizer - MMSE-BDFE Minimum mean square error block decision feedback equalizer - MRC Maximal-ratio combining - RA Rural area - SC Selection combining - SNR Signal-to-noise ratio - TDMA Time division multiple access - TU Typical urban - WSSUS Wide sense stationary uncorrelated scattering - ZF-BLE Zero forcing block linear equalizer - ZF-BDFE Zero forcing block decision feedback equalizer  相似文献   

4.
Turbo-codes which are applicable to speech transmission in digital mobile radio systems are treated. Three turbo-codes of different complexity are presented. The proposed turbo-codes are suitable for the application to speech transmission in the joint detection code-division multiple access (JD-CDMA) mobile radio system with coherent receiver antenna diversity (CRAD) which are described concisely. The performance of the designed turbo-codes in terms of bit and frame error rates are shown in the case of additive white Gaussian noise (AWGN) channels, flat Rayleigh fading channels, and in the uplink of the aforementioned JD-CDMA mobile radio system  相似文献   

5.
For future mobile radio systems, an appropriately chosen multiple access technique is a critical issue. Multiple access techniques presently under discussion are code division multiple access (CDMA), time division multiple access (TDMA), and hybrids of both. In the paper, a hybrid C/TDMA system using joint detection (JD-C/TDMA) with coherent receiver antenna diversity (CRAD) at the base station (BS) receiver is proposed. Some attractive features of the JD-C/TDMA system are the possibility to flexibly offer voice and data services with different bit rates, soft capacity, inherent frequency and interferer diversity, and high system capacity due to JD. Furthermore, due to JD, a cluster size equal to 1 can be realized without needing soft handover. The single cell Eb/N0 performance and the interference situation in a cellular environment of the uplink of a JD-C/TDMA mobile radio system with CRAD is investigated in detail. It is shown that the cellular spectrum efficiency is remarkably high, taking values up to 0.2 bit/s/Hz/BS in the uplink, depending on the actual transmission conditions  相似文献   

6.
In this paper, we consider a transmit antenna and user selection for maximum-likelihood (ML) detector in multiuser spatial multiplexing systems. The conventional algorithm that maximizes the minimum stream SNR is not optimal in terms of the error probability, because it is tailored for linear detectors. We propose a simple transmit antenna and user selection scheme for the ML detector based on maximizing the minimum distance. Numerical results show that the proposed scheme provides enhanced performance compared with the conventional algorithms in terms of the error probability of ML receiver.  相似文献   

7.
Several space-diversity techniques combined with maximum-likelihood sequence estimation (MLSE) are considered for time-division multiple-access (TDMA) digital mobile radio. Under the assumption that diversity paths fade independently, the Nth order diversity maximum-likelihood (ML) receiver is analyzed. Two categories of diversity receivers with MLSE are taken into account: the receivers performing diversity on the signal samples and those applying diversity inherently in the sequential algorithm. The simulation study was performed for standard global system for mobile communication (GSM) channel models. The results confirm the fact that even second-order diversity is a very powerful means improving the TDMA system performance  相似文献   

8.
In cellular mobile radio systems, the directional inhomogeneity of the mobile radio channel can be exploited by smart antennas to increase the spectral efficiency. In this paper, a novel smart antenna concept applying receiver antenna diversity at the uplink receiver is investigated for a time-slotted code-division multiple-access (CDMA) mobile radio air interface termed time-division CDMA (TD-CDMA), which has been selected by the European Telecommunications Standards Institute (ETSI) in January 1998 to form part of the Universal Mobile Telecommunications System (UMTS) air interface standard. First, a combined direction-of-arrival (DOA) and joint channel estimation scheme is presented, which is based on DOA estimation using the Unitary ESPRIT algorithm and maximum likelihood estimation of the channel impulse responses associated with the estimated DOA's, which can also be used as an input for advanced mobile positioning schemes in UMTS. The performance of the combined DOA and joint channel estimation is compared with the conventional channel estimation through simulations in rural and urban propagation environments. Moreover, a novel joint data detection scheme is considered, which explicitly takes into account the signal DOA's and the associated channel impulse responses. The link level performance of a TD-CDMA mobile radio system using these novel schemes is evaluated by Monte Carlo simulations of data transmission, and average bit error rates (BER's) are determined for rural and urban propagation environments. The simulation results indicate that, depending on the propagation environment, the exploitation of the knowledge of the directional inhomogeneity of the mobile radio channel can lead to considerable system performance enhancements  相似文献   

9.
A multiple antenna‐aided, minimum bit error rate–Bell Laboratories‐layered space–time (MBER–BLAST) multiuser detection algorithm is proposed for uplink orthogonal frequency division multiplexing–space division multiple access (OFDM–SDMA) communication to increase the capacity of the system. The proposed algorithm overcomes the limitations of the conventional detectors when the number of users exceed the number of receiver antennas. A particle swarm optimization (PSO) algorithm is employed for finding the optimum weight vectors for MBER detector. PSO is well suited for physically realizable, real‐time applications, where low complexity and fast convergence are of absolute importance, while an optimum maximum likelihood (ML) detection using an exhaustive search method is prohibitively complex. The proposed algorithm outperforms the MBER detector and is capable of achieving performance close to that attained by ML detector at a significantly lower complexity, especially under high user loads. Simulation results show that MBER–BLAST detector promises substantially improved performance compared with the existing systems and offers a good performance–complexity trade‐off. It supports a large number of users by exploiting the capacity advantages of multiple antenna systems in rich scattering environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Generalized spatial modulation (GSM) is an extension of spatial modulation which is significant for the next generation communication systems. Optimal detection process for the GSM is the maximum-likelihood (ML) detection which jointly detects the antenna combinations and transmitted symbols. However, the receiver is much more complicated than SM due to inter-antenna interference and/or increased number of combinations. Therefore, the computational complexity of the ML detection grows with the number of transmit antennas and the signal constellation size. In this letter, we introduce a novel and simple detection algorithm which uses sub-optimal method based on the least squares solution to detect likely antenna combinations. Once the antenna indices are detected, ML detection is utilized to identify the transmitted symbols. For obtaining near-ML performance while keeping lower complexity than ML detection, sphere decoding is applied. Our proposed algorithm reduces the search complexity while achieving a near optimum solution. Computer simulation results show that the proposed algorithm performs close to the optimal (ML) detection resulting in a significant reduction of computational complexity.  相似文献   

11.
Smart antennas for base stations of cellular mobile radio systems offer the potential of system performance enhancement by taking advantage of the directionally inhomogeneous signal reception at the receiver. In this paper, two-dimensional array configurations employed at the uplink receiver of a joint detection CDMA (JD-CDMA) mobile radio system are investigated. This smart antenna concept can be split up into a novel channel estimator and data detector which incorporate explicitely the information of the direction-of-arrival (DOA) of signals emerging from users assigned to the considered base station. Proceeding from channel models that model the directional inhomogeneity of the mobile radio channel with single DOAs, the link level performance of a JD-CDMA mobile radio system using this smart antenna concept is evaluated for the rural propagation environment. The performance evaluation is based on Monte Carlo simulations of data transmission and average bit error rates versus the average signal to noise ratio per net information bit are presented for different array configurations. Although these results should be considered as upper bounds for the link level performance, they reveal the advantages of implementing two-dimensional array configurations at the uplink receiver of a JD-CDMA mobile radio system.  相似文献   

12.
To reduce the number of radio frequency (RF) chains in multiple input multiple output (MIMO) systems, generalized spatial modulation (GSM) techniques have been proposed in the literature. In this paper, we propose a zero‐forcing (ZF)‐based detector, which performs an initial pruning of the search tree that will be considered as the initial condition in a sphere decoding (SD) algorithm. The proposed method significantly reduces the computational complexity of GSM systems while achieving a near maximum likelihood (ML) performance. We analyze the performance of the proposed method and provide an analytic performance difference between the proposed method and the ML detector. Simulation results show that the performance of the proposed method is very close to that of the ML detector, while achieving a significant computational complexity reduction in comparison with the conventional SD method, in terms of the number of visited nodes. We also present some simulations to assess the accuracy of our theoretical results.  相似文献   

13.
The main requirements to be met by third generation mobile radio systems are high cellular spectrum efficiency and high flexibility. The authors focus on high cellular spectrum efficiency, which is difficult to achieve due to the time variance and frequency selectivity of the mobile radio channel and due to interference. It is known that the degrading effects of these adverse characteristics of the mobile radio channel and of interference can be mitigated by diversity. The way how diversity influences cellular spectrum efficiency is derived in general. As a reference point, the types of diversity used in GSM are analyzed. In GSM, the potential for diversity enhancement inherent in code-division multiple-access (CDMA) is not exploited. A joint detection code-division multiple-access (JD-CDMA) system concept aimed at third generation mobile radio systems has been proposed which introduces a CDMA feature into systems based on time-division multiple-access (TDMA) and frequency-division multiple-access (FDMA) like GSM and also advanced TDMA (ATDMA). The gains achievable by different types of diversity in GSM as well as in the JD-CDMA system concept are investigated. It is shown that considerable gains can be achieved by different types of antenna diversity and by exploiting the additional diversity potential of CDMA. Therefore, third generation standards should be flexible in order to allow the use of as many types of diversity as possible to enhance the cellular spectrum efficiency  相似文献   

14.
In this paper the novel detection scheme multi-step joint detection for TD-CDMA mobile radio systems is presented. Multi-step joint detection uses the turbo principle for iteratively improving data detection. Extrinsic information obtained by FEC-decoding in a previous step is used for a joint reduction of interference and improvement of asymptotic efficiency of the linear multiuser detector. Multi-step joint detection helps to overcome the problems of small asymptotic efficiencies present in linear multiuser detectors like the zero forcing equalizer in TD-CDMA mobile radio systems in the case of high system loads. Simultaneously complexity is much lower than that of optimum nonlinear multiuser detectors based on the Viterbi algorithm. As an alternative to simulations the performance of multi-step joint detection can be theoretically determined under certain not too restrictive assumptions. Both approximate and simulative performance results are presented in the paper. It is shown that in typical mobile radio systems the required SNR at the receiver input can be reduced by approximately 10 dB compared to linear multiuser detection. Thus, multi-step joint detection helps to increase the permissible number of mobile stations per cell or to decrease the required cluster size in TD-CDMA mobile radio systems and thus improves spectrum efficiency and capacity.  相似文献   

15.
Transmitter diversity in the downlink of code-division multiple-access (CDMA) systems achieves similar performance gains to the mobile-station receiver diversity without the complexity of a mobile-station receiver antenna array. Pre-RAKE precoding at the transmitter can be employed to achieve the multipath diversity without the need of the RAKE receiver at the mobile station. We examine feasibility of several transmitter diversity techniques and precoding for the third-generation wideband CDMA (WCDMA) systems. In particular, selective transmit diversity, transmit adaptive array and space-time pre-RAKE (STPR) techniques are compared. It is demonstrated that the STPR method is the optimal method to combine antenna diversity and temporal precoding. This method achieves the gain of maximum ratio combining of all space and frequency diversity branches when perfect channel state information is available at the transmitter. We employ the long range fading prediction algorithm to enable transmitter diversity techniques for rapidly time varying multipath fading channels.  相似文献   

16.
A four-element pilot symbol-assisted coherent adaptive antenna array diversity receiver for 4.096 Mchip/s wideband direct sequence code division multiple access mobile radio is implemented and its performance in a multipath fading environment is evaluated by a laboratory experiment using hardware fading simulators. The receiver comprises an adaptive antenna array using the normalised least mean square algorithm and Rake combiner. It is demonstrated that, for the three-user case, the required average signal-to-interference ratio obtaining average BER of 10-3 can be reduced by ~8 dB compared to four-branch antenna diversity  相似文献   

17.
In earlier work, the performance (in terms of data eye closure) of a threshold detector in 2- and 4-PSK modulation schemes has been analyzed for wireless indoor systems using narrowbeam antennas. Here, assuming the channel is known, a very efficient implementation of the Viterbi algorithm (VA) is included in the receiver, and a bit-error rate (BER) criterion is used to evaluate the receiver robustness to channel conditions. In contrast to the earlier work, it is seen that 4-PSK signals with VA detectors are indeed more robust than 2-PSK signals to channel conditions  相似文献   

18.
Two soft-limiter RAKE receivers are evaluated for coded direct-sequence/differential phase shift keying (DS/DPSK) signaling over a pulse jammed multipath-fading channel that use a combination of antenna and multipath diversity. One uses predetection selective (antenna) combining followed by postdetection equal gain (multipath) combining, and the other uses postdetection equal gain combining only. In either case, the postdetection diversity combiner output is soft-limited prior to decoding. It is shown that for increasing levels of diversity the soft-limiter becomes quite effective, resulting in a receiver performance that approaches a maximum likelihood (ML) soft decision receiver with perfect jammer state information  相似文献   

19.
A theoretical and experimental comparison of performance has been made between two types of predetection switching space diversity mobile radio systems. This comparison was made at a frequency of 840 MHz using simulated Rayleigh fading for a vehicle speed of about 80 mi/h. The switch diversity system was a conventional receiver antenna switching technique with two simulated physically separated receiving antennas and a single transmitting antenna. The feedback diversity system used a single receiving antenna with two simulated physically separated transmitting antennas. The transmitting antennas were switched remotely from the receiver. The difference in the performance of the two systems was shown to be primarily due to time delay inherent in the remote antenna switching technique.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号