首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of the semiconducting compound Mg2Ge were deposited by magnetron cosputtering from source targets of high-purity Mg and Ge onto glass substrates at temperatures T s = 300°C to 700°C. X-ray diffraction shows that the Mg2Ge compound begins to form at a substrate temperature T s ≈ 300°C. Films deposited at T s = 400°C to 600°C are single-phase Mg2Ge and have strong x-ray peaks. At higher T s the films tend to be dominated by a Ge-rich phase primarily due to the loss of magnesium vapor from the condensing film.␣At optimum deposition temperatures, 550°C to 600°C, films have an electrical conductivity σ 600 K = 20 Ω−1 cm−1 to 40 Ω−1 cm−1 and a Seebeck coefficient α = 300 μV K−1 to 450 μV K−1 over a broad temperature range of 200 K to 600 K.  相似文献   

2.
Silver doped p-type Mg2Ge thin films were grown in situ at 773 K using magnetron co-sputtering from individual high-purity Mg and Ge targets. A sacrificial base layer of silver of various thicknesses from 4 nm to 20 nm was initially deposited onto the substrate to supply Ag atoms, which entered the growing Mg2Ge films by thermal diffusion. The addition of silver during film growth led to increased grain size and surface microroughness. The carrier concentration increased from 1.9 × 1018 cm−3 for undoped films to 8.8 × 1018 cm−3 for the most heavily doped films, but it did not reach saturation. Measurements in the temperature range of T = 200–650 K showed a positive Seebeck coefficient for all the films, with maximum values at temperatures between 400 K and 500 K. The highest Seebeck coefficient of the undoped film was 400 μV K−1, while it was 280 μV K−1 for the most heavily doped film at ∼400 K. The electrical conductivity increased with silver doping by a factor of approximately 10. The temperature effects on power factors for the undoped and lightly doped films were very limited, while the effects for the heavily doped films were substantial. The power factor of the heavily doped films reached a non-optimum value of ∼10−5 W cm−1 K−2 at 700 K.  相似文献   

3.
In major applications, optimal power will be achieved when thermoelectric films are at least 100 μm thick. In this paper we demonstrate that screen-printing is an ideal method to deposit around 100 μm of (Bi,Sb)2(Te,Se)3-based films on a rigid or flexible substrate with high Seebeck coefficient value (90 μV K−1 to 160 μV K−1) using a low-temperature process. Conductive films have been obtained after laser annealing and led to acceptable thermoelectric performance with a power factor of 0.06 μW K−2 cm−1. While these initial material properties are not at the level of bulk materials, the complete manufacturing process is cost-effective, compatible with large surfaces, and affords a mass-production technique.  相似文献   

4.
We report studies of InN grown by plasma-assisted molecular beam epitaxy. GaN templates were first grown on sapphire substrates followed by InN overgrown at 457°C to 487°C. Atomic force microscopy shows the best layers to exhibit step-flow growth mode of the InN, with a root-mean-square roughness of 0.7 nm for the 2 μm × 2 μm scan and 1.4 nm for the 5 μm × 5 μm scan.␣Measurements of the terrace edges indicate a step height of 0.28 nm. Hall measurements at room temperature give mobilities ranging from 1024 cm2/V s to 1904 cm2/V s and the electron concentrations are in the range of 5.9 × 1017 cm−3 to 4.2 × 1018 cm−3. Symmetric and asymmetric reflection x-ray diffraction measurements were performed to obtain lattice constants a␣and c. The corresponding hydrostatic and biaxial stresses are found to range from −0.08 GPa to −0.29 GPa, and −0.05 GPa to −0.32 GPa, respectively. Low-temperature photoluminescence peak energies range from 0.67 eV to 0.70 eV, depending on residual biaxial stress, hydrostatic pressure, and electron concentrations. The electron concentration dependence of the estimated Fermi level is analyzed using Kane’s two-band model and conduction-band renormalization effects.  相似文献   

5.
In this work we present the electrical characterization of ZnO-based thin-film transistors fabricated at room temperature. The ZnO films were deposited by radiofrequency magnetron sputtering at variable argon pressure (3 mTorr to 10 mTorr) at room temperature. The sputtered ZnO films were polycrystalline with hexagonal structure and electrical resistivity ranging from 101 Ω cm to 108 Ω cm for films deposited from 3 mTorr to 10 mTorr. The trend in the electrical behavior of the devices was found to be due to the variation of the electron concentration of the ZnO films. The devices with better performance showed a field-effect mobility of 2.9 cm2/Vs, threshold voltage of 20 V, I on/I off ≈ 106, and electrical resistivity of ~108 Ω cm. In addition, linear behavior of I on/I off with deposition pressure was observed. The lowest I on/I off ratio (~2) was calculated for devices with ZnO layers deposited at 3 mTorr, and the highest ratio (~106) for devices processed at 10 mTorr. Hall-effect measurements were performed on ZnO films showing the lowest resistivity. The layer grown at 3 mTorr showed a Hall mobility of μ H = 8.9 cm2/Vs and carrier concentration of n = 4.2 × 1016 cm−3 with resistivity of ρ = 31.8 Ω cm. For films deposited at 5 mTorr, the Hall mobility, carrier concentration, and resistivity were μ H = 7.9 cm2/Vs, n = 3.4 × 1016 cm−3, and ρ = 38.4 Ω cm, respectively. Films deposited at 8 mTorr and 10 mTorr could not be measured due to their high resistance.  相似文献   

6.
A new alkaline electrolyte containing SbO2, TeO32−, triethanolamine, and diaminourea polymer (DAUP) was used to deposit Sb2Te x (2 < x < 6) films. Deaeration of the electrolyte with argon was applied to eliminate oxygen interference. Hot uniaxial pressing (HUP) was chosen as the posttreatment process for the deposited films. DAUP can significantly increase the tellurium content in the deposited film, with little influence on deposition thermodynamics. The as-deposited films exhibited amorphous crystal structure. Argon deaeration proved to be favorable for improving the Seebeck coefficient of the films because oxygen contamination was reduced. HUP treatment reduced the electrical resistance of the films by orders of magnitude. The maximum Seebeck coefficient and power factor of 532 μV K−1 and 1.58 mW m−1 K−2, respectively, were obtained with DAUP and argon deaeration, followed by HUP posttreatment.  相似文献   

7.
Antimony and tellurium were deposited on BK7 glass using direct-current magnetron and radiofrequency magnetron cosputtering. Antimony telluride thermoelectric thin films were synthesized with a heated substrate. The effects of substrate temperature on the structure, surface morphology, and thermoelectric properties of the thin films were investigated. X-ray diffraction patterns revealed that the thin films were well crystallized. c-Axis preferred orientation was observed in thin films deposited above 250°C. Scanning electron microscopy images showed hexagonal crystallites and crystal grains of around 500 nm in thin film fabricated at 250°C. Energy-dispersive spectroscopy indicated that a temperature of 250°C resulted in stoichiometric Sb2Te3. Sb2Te3 thin film deposited at room temperature exhibited the maximum Seebeck coefficient of 190 μV/K and the lowest power factor (PF), S 2 σ, of 8.75 × 10−5 W/mK2. When the substrate temperature was 250°C, the PF increased to its highest value of 3.26 × 10−3 W/mK2. The electrical conductivity and Seebeck coefficient of the thin film were 2.66 × 105 S/m and 113 μV/K, respectively.  相似文献   

8.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

9.
Calcium copper titanium oxide (CaCu3Ti4O12, abbreviated to CCTO) films were deposited on Pt/Ti/SiO2/Si substrates at room temperature (RT) by radiofrequency magnetron sputtering. As-deposited CCTO films were treated by rapid thermal annealing (RTA) at various temperatures and in various atmospheres. X-ray diffraction patterns and scanning electron microscope (SEM) images demonstrated that the crystalline structures and surface morphologies of CCTO thin films were sensitive to the annealing temperature and ambient atmosphere. Polycrystalline CCTO films could be obtained when the annealing temperature was 700°C in air, and the grain size increased signifi- cantly with annealing in O2. The 0.8-μm CCTO thin film that was deposited at RT for 2 h and then annealed at 700°C in O2 exhibited a high dielectric constant (ε′) of 410, a dielectric loss (tan δ) of 0.17 (at 10 kHz), and a leakage current density (J) of 1.28 × 10−5 A/cm2 (at 25 kV/cm).  相似文献   

10.
An initial investigation of the use of atomic nitrogen for controlled p-type doping of wide-bandgap Hg0.3Cd0.7Te (= 0.7) is reported. Mixtures of argon and nitrogen, ranging in nitrogen concentration from 0.1% to 100%, have been utilized to demonstrate well-controlled nitrogen incorporation in the 1016 cm−3 to 1020 cm−3 range using total gas flow rates of 0.3 sccm to 4.0 sccm and radiofrequency (RF) powers of 100 W to 400 W. Nitrogen doping exhibits several desirable attributes including abrupt turn-on and turn-off and minimal sensitivity to variations in growth temperature and HgCdTe composition, with no negative effects on HgCdTe dislocation density and morphology. Preliminary electrical measurements indicate primarily n-type behavior in the 1014 cm−3 to 1015 cm−3 range in as-grown = 0.7 HgCdTe and CdTe films doped with nitrogen at 1018 cm−3 to 1020 cm−3 concentrations, while ZnTe films have exhibited p-type electrical activity with hole concentrations approaching 1020 cm−3.  相似文献   

11.
The temperature dependence of the thermal conductivity κ(T), electrical resistivity ρ(T), and Seebeck coefficient S(T) of Mg2Sn:Ag crystals with 0 at.% to 1 at.% Ag content were measured at T = 2 K to 400 K. The crystals were cut from ingots that were prepared by the vertical Bridgman method. Undoped samples show a dramatic κ ∝ T 3 rise at low temperatures to a peak value κ 15K = 477 W m−1 K−1. This leads to exceptionally large phonon drag effects causing giant thermopower with S rising sharply to a peak value S 20K = 3000 μV K−1. At higher temperatures S decreases and changes sign to intrinsic values S ≈ −60 μV K−1. The addition of Ag changes the transport properties as follows: (a) κ decreases systematically, the peak shifts to 30 K and falls to 7 W m−1 K−1; (b) ρ changes from high to low values; (c) S(T) changes to a linear dependence with S 300K ≈ 150 μV K−1 to 200 μV K−1.  相似文献   

12.
We have measured the resistivity ρ and Hall coefficient RH at 300, 77, and 4.2 K of p-type Pb1−XCdXS epitaxial films as a function of substrate temperature Ts, film thickness d, and composition x. The films were vapor deposited on cleaved (111) BaF2 (111) SrF2 , and (001) NaCl and polished (001) BaF2 substrates. The Hall mobility μH at 77 K of p-type PbS films increased approximately linearly from 1 × 104 to 2 × 104 cm2 V−1 sec−1 as Ts was varied from 400 to 500°C, respectively. Both μH and RH increased with d due to the presence of a strong p-type surface layer on the exposed surface. The x of the films was controlled by the x of the source material and Ts. The mole fraction of CdS could be varied between 0.002 < x < 0.06 by varying T between 513 and 410°C, respectively, and using source material with x = 0.06. The electrical properties of samples grown on freshly cleaved (111) BaF2 and (111) SrF2 were essentially identical even though the lattice constant of SrF2 is a better match to Pb1−XCdXS than BaF2. The RH and μH at 77 K were independent of thickness for low substrate temperatures and were observed to increase with increasing thickness for high substrate temperatures. The μH increased with decreasing temperature and became temperature independent below about 30 K, which is similar to the behavior observed in other lead salt compounds. However, the magnitude of μH was considerable lower throughout the 300 to 4.2 K temperature range than for PbS films. The RH showed little temperature variation, which is typical lead salt behavior. Supported by Naval Surface Weapons Center Independent Research Funds.  相似文献   

13.
This article demonstrates that carrier concentrations in bismuth telluride films can be controlled through annealing in controlled vapor pressures of tellurium. For the bismuth telluride source with a small excess of tellurium, all the films reached a steady state carrier concentration of 4 × 1019 carriers/cm3 with Seebeck coefficients of −170 μV K−1. For temperatures below 300°C and for film thicknesses of 0.4 μm or less, the rate-limiting step in reaching a steady state for the carrier concentration appeared to be the mass transport of tellurium through the gas phase. At higher temperatures, with the resulting higher pressures of tellurium or for thicker films, it was expected that mass transport through the solid would become rate limiting. The mobility also changed with annealing, but at a rate different from that of the carrier concentration, perhaps as a consequence of the non-equilibrium concentration of defects trapped in the films studied by the low temperature synthesis approach.  相似文献   

14.
A H-terminated surface conductive layer of B-doped diamond on a (111) surface was used to fabricate a metal–oxide–semiconductor field-effect transistor (MOSFET) using an electron beam evaporated SiO2 or Al2O3 gate insulator and a Cu-metal stacked gate. When the bulk carrier concentration was approximately 1015/cm3 and the B-doped diamond layer was 1.5 μm thick, the surface carrier mobility of the H-terminated surface on the (111) diamond before FET processing was 35 cm2/Vs and the surface carrier concentration was 1.5 × 1013/cm2. For the SiO2 gate (0.76 μm long and 50 μm wide), the maximum measured drain current at a gate voltage of −3.0 V was −75 mA/mm and the maximum transconductance was 24 mS/mm, and for the Al2O3 gate (0.64 μm long and 50 μm wide), these features were −86 mA/mm and 15 mS/mm, respectively. These values are among the highest reported direct-current (DC) characteristics for a diamond homoepitaxial (111) MOSFET.  相似文献   

15.
Nanocrystalline GaN films were prepared by thermal treatment of amorphous GaN films under flowing NH3 at a temperature of 600°C to 950°C for 1 h to 2 h. X-ray diffraction and field-emission scanning electron microscopy confirmed the formation of high-crystal-quality hexagonal GaN films with preferential (002) orientation. The photoluminescence spectrum showed a sharp peak near the band gap emission located at 368 nm and a broad blue peak centered at 430 nm. Five first-order Raman modes near ∼143 cm−1, 535 cm−1, 555 cm−1, 568 cm−1, and 731 cm−1 with two new additional Raman peaks at 257 cm−1 and 423 cm−1 were observed. The origin of these new Raman peaks is discussed briefly.  相似文献   

16.
We describe the epitaxial growth of InSb films on both Si (001) and GaAs (100) substrates using molecular-beam epitaxy and discuss the structural and electrical properties of the resulting films. The complete 2 μm InSb films on GaAs (001) were grown at temperatures between 340°C and 420°C and with an Sb/In flux ratio of approximately 5 and a growth rate of 0.2 nm/s. The films were characterized in terms of background electron concentration, mobility, and x-ray rocking curve width. Our best results were for a growth temperature of 350°C, resulting in room-temperature mobility of 41,000 cm2/V s.  For the growth of InSb on Si, vicinal Si(001) substrates offcut by 4° toward (110) were used. We investigated growth temperatures between 340°C and 430°C for growth on Si(001). In contrast to growth on GaAs, the best results were achieved at the high end of the range of T S =  C, resulting in a mobility of 26,100 cm2/V s for a 2 μm film. We also studied the growth and properties of InSb:Mn films on GaAs with Mn content below 1%. Our results showed the presence of ferromagnetic ordering in the samples, opening a new direction in the diluted magnetic semiconductors.  相似文献   

17.
Electrical activation studies of Al x Ga1−x N (x = 0.45 and 0.51) implanted with Si for n-type conductivity have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1 × 1014 cm−2 to 1 × 1015 cm−2 at room temperature. The samples were subsequently annealed from 1150°C to 1350°C for 20 min in a nitrogen environment. Nearly 100% electrical activation efficiency was successfully obtained for the Si-implanted Al0.45Ga0.55N samples after annealing at 1350°C for doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 and at 1200°C for a dose of 1 × 1015 cm−2, and for the Al0.51Ga0.49N implanted with silicon doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 after annealing at 1300°C. The highest room-temperature mobility obtained was 61 cm2/V s and 55 cm2/V s for the low-dose implanted Al0.45Ga0.55N and Al0.51Ga0.49N, respectively, after annealing at 1350°C for 20 min. These results show unprecedented activation efficiencies for Al x Ga1−x N with high Al mole fractions and provide suitable annealing conditions for Al x Ga1−x N-based device applications.  相似文献   

18.
The thermoelectric power of Rh and Ir was redetermined between 100 K and 1400 K. It varies almost linearly from +1.7 μV K−1 to −3.8 μV K−1 for Rh and from +1.5 μV K−1 to −2.2 μV K−1 for Ir. The diffusive part of the thermopower could be calculated from the density of states. It is approximately equal to the temperature dependence of the electrochemical potential of the electrons divided by the electronic charge. This is attributed to the approximate establishment of local equilibrium between electrons and lattice atoms above 400 K—a condition not fulfilled in the phonon-drag regime below 300 K.  相似文献   

19.
Ultralow-dielectric-constant (k) porous SiCOH films have been prepared using 1,2-bis(triethoxysilyl)ethane, triethoxymethylsilane, and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer template by means of spin-coating. The resulting films were characterized by cross-section scanning electron microscopy, small-angle x-ray diffraction, atomic force microscopy, Fourier-transform infrared spectroscopy, nanomechanical testing, and electrical measurements. Thermal treatment at 350°C for 2 h resulted in the formation of ultralow-k films with k of ∼2.0, leakage current density of 3 × 10−8 A/cm2 at 1 MV/cm, reduced modulus (E r) of ∼4.05 GPa, and hardness (H) of ∼0.32 GPa. After annealing between 400°C and 500°C for 30 min, the resulting films showed fluctuant k values of 1.85 to 2.22 and leakage current densities of 3.7 × 10−7 A/cm2 to 3 × 10−8 A/cm2 at 0.8 MV/cm, likely due to the change of the film microstructure. Compared with 350°C annealing, higher-temperature annealing can improve the mechanical strength of the ultralow-k film, i.e., E r ≈ 5 GPa and H ≈ 0.56 GPa after 500°C annealing.  相似文献   

20.
Thermoelectric Sb x Te y films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different concentrations of TeO2. Stoichiometric Sb x Te y films were obtained by applying a voltage of −0.15 V versus saturated calomel electrode (SCE) using a solution consisting of 2.4 mM TeO2, 0.8 mM Sb2O3, 33 mM tartaric acid, and 1 M HNO3. The nearly stoichiometric Sb2Te3 films had a rhombohedral structure, R[`3]m R\bar{3}m , with a preferred orientation along the (015) direction. The films had hole concentration of 5.8 × 1018/cm3 and exhibited mobility of 54.8 cm2/Vs. A more negative potential resulted in higher Sb content in the deposited Sb x Te y films. Furthermore, it was observed that the hole concentration and mobility decreased with increasingly negative deposition potential, and eventually showed insulating properties, possibly due to increased defect formation. The absolute value of the Seebeck coefficient of the as-deposited Sb2Te3 thin film at room temperature was 118 μV/K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号