首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
研究了机械球磨与真空烧结制备FeAl基合金的工艺——球磨过程中Fe-Al粉末的结构转变及FeAl基烧结体的微观结构和力学性能。结果表明,Fe、Al单质混合粉末经机械球磨可得到具有Fe、Al相间层片结构的复合粉,且球磨时间越长,Fe、Al复合粉的层片结构越薄越均匀。FeAl基材料优异的室温力学性能与晶粒细化、组织均化效应有关。  相似文献   

2.
高能球磨低温烧结对FeAl合金组织的影响   总被引:1,自引:0,他引:1  
利用高能球磨,通过剧烈的塑性变形,使Fe、AI粉末颗粒发生细化和机械合金化,并产生高的畸变能和界面能,在560℃和620℃进行低温烧结,Fe、Al原子沿着大量的晶界和缺陷进行扩散,形成FeAl合金相.经过12h的高能球磨.620℃烧结、保温4h,可以使Fe、Al复合粉完全转变成FeAl金属间化合物.晶粒均匀细小,呈现等轴状,晶粒大小约为30nm.  相似文献   

3.
采用WC/Fe/Al混合粉末,通过机械合金化制备40v0l% WC/Fe(Al)固溶体复合粉末,利用冷喷涂沉积涂层并结合热处理原位反应制备了WC/FeAl金属间化合物基金属陶瓷涂层.研究了球磨时间对复合粉末相结构、晶粒尺寸及组织结构的影响,并分析了冷喷涂WC/FeAl金属间化合物基金属陶瓷涂层的组织和显微硬度.结果表明,机械合金化可获得WC陶瓷颗粒呈微/纳米多尺度分布的WC/Fe(Al)金属陶瓷复合粉末,球磨36 h的复合粉末基体相平均晶粒尺寸约为90 nm,冷喷复合涂层组织致密、多尺度WC颗粒在基体中均匀弥散分布,涂层显微硬度约为1060 HV0.3,涂层在650℃热处理后发生Fe(Al)固溶体向FeAl金属间化合物的原位转变,制备出了WC/FeAl金属间化合物基金属陶瓷涂层.  相似文献   

4.
以Fe3O4粉和Al粉为原料,采用机械球磨诱发化学反应制备了Fe3Al-Al2O3纳米晶复合粉体。利用X射线衍射仪(XRD)和附带能量色散谱仪(EDS)的扫描电子显微镜(SEM)对复合粉体球磨过程中的固态反应过程、表面形貌进行表征。结果表明,球磨过程中,30 min后混合粉末中开始出现少量的Al2O3颗粒,1 h后大部分Fe3O4被还原,形成α-Al2O3、θ-Al2O3、Fe(Al)固溶体和FeO,另有Al剩余。球磨3 h后,大部分的θ-Al2O3转变为α-Al2O3,Fe(Al)固溶体、FeO和剩余的Al粉在机械力的作用下反应形成FeAl化合物和Fe.911O。继续球磨至5 h后,FeAl化合物和Fe.911O相互反应而完全消耗,得到Fe3Al-Al2O3复合粉体。机械力诱发的Fe3O4和Al之间的反应属于突发型反应,诱发反应的临界球磨时间约为50 min。  相似文献   

5.
机械球磨Ti50Al50复合粉的压制特性   总被引:2,自引:0,他引:2  
研究了机械球磨Ti50Al50复合粉的组织与压制特性.结果表明,球磨导致粉末硬度增加,压制特性变差,这是由于球磨使层片结构细化,Ti和Al组元晶体缺陷增加和晶粒细化造成的;但球磨3h形成纳米晶复合粉后,尤其是在球磨7.5  相似文献   

6.
研究了机械球磨Ti50 Al50 复合粉的组织与压制特性。结果表明 ,球磨导致粉末硬度增加 ,压制特性变差 ,这是由于球磨使层片结构细化 ,Ti和Al组元晶体缺陷增加和晶粒细化造成的 ;但球磨 3h形成纳米晶复合粉后 ,尤其是在球磨 7.5h开始发生非晶转变后 ,进一步球磨 ,粉末压制特性变化并不明显  相似文献   

7.
利用机械合金化制备纳米结构FeAl固溶体合金粉末,采用冷喷涂沉积Fe(Al)固溶体合金涂层并结合后热处理原位反应制备了纳米结构FeAl金属间化合物涂层。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)等研究了机械合金化Fe(Al)固溶体合金粉末、喷涂态Fe(Al)合金及热处理后FeAl金属间化合物涂层的组织结构特征。结果表明,球磨Fe(Al)合金粉末具有精细的层状结构,喷涂态Fe(Al)合金涂层具有不同于传统热喷涂涂层的独特层状结构,保留了与原始粉末类似的纳米结构;在500℃热处理后涂层中Fe(Al)固溶体转变为FeAl金属间化合物,其晶粒尺寸约为30 nm。  相似文献   

8.
将纯Fe粉和Al粉按原子比Fe∶Al=60∶40混合后,在行星式高能球磨机中进行机械合金化,采用X射线衍射仪、扫描电镜、透射电镜和硬度仪研究球磨过程中Fe-Al合金粉末相结构、晶粒尺寸、表面形貌、截面形貌和硬度的演变规律。结果发现,球磨24 h后,Al原子全部固溶于Fe晶格中,形成Fe(Al)过饱和固溶体,随着球磨时间的增加,晶粒尺寸呈现先快后慢的减小趋势,球磨36 h后合金粉末的晶粒尺寸小于100 nm。粉末内部组织为层状结构,且随着球磨时间延长层片厚度不断减小,球磨36 h后层状结构全部消失,获得组织均匀的纳米晶Fe-Al合金粉末。随着球磨时间延长,Fe-Al合金粉末的硬度不断增加,球磨36 h后合金粉末的硬度约为405 HV0. 025。球磨Fe(Al)固溶体合金粉末在500℃热处理转变为有序Fe Al金属间化合物。  相似文献   

9.
采用机械合金化结合热处理工艺制备Fe3Al金属间化合物粉末,并通过热压烧结工艺制备Fe3Al金属间化合物块材.研究机械合金化和热处理工艺对所制备Fe3Al金属间化合物粉末的物相组成和显微结构的影响.并对Fe3Al金属间化合物块材的物相组成、显微结构和力学性能进行研究.采用机械合金化工艺球磨60h制备Fe-Al金属间化合物粉末;Fe-Al合金粉末经800、1000℃热处理工艺转变成Fe3Al金属间化合物粉末.研究表明,随着球磨时间的增加,Fe-Al金属间化合物粉末的颗粒尺寸逐渐减小.球磨60h得到的Fe-Al金属间化合物粉末的平均粒度为4~5 μm.经800、1000℃热处理得到的Fe3Al金属间化合物粉末的平均粒度为4~5 μm;热压烧结块材为Fe3Al金属间化合物相;热压烧结制备的Fe3Al金属间化合物块材的显微结构均匀致密;热压烧结工艺制备的Fe3Al金属间化合物块材的相对密度较高且具有较高力学性能.  相似文献   

10.
以Fe粉、Al粉末为对象,采用机械合金化制备Fe-40Al合金复合粉末,研究球磨工艺参数对Fe-40Al合金粉末形貌及组织结构的影响规律,为机械合金化制备适合冷喷涂用Fe-40Al合金粉末提供最佳的工艺参数。研究结果表明,球磨后的Fe-40Al合金粉末具有独特的层状组织结构,随着球磨时间的延长,Fe-40Al合金粉末的平均粒径不断减小,由于Fe、Al相互扩散作用加强,粉末内部的层状结构不断细化而消失;随着球料比增加,机械合金化效率显著提高,相同球磨时间内Fe-40Al合金粉末粒径减小的幅度显著增大,同时粉末内部合金化过程加剧,导致层状结构快速消失。  相似文献   

11.
机械合金化制备TiB2-Ni(Al)复合粉末组织结构研究   总被引:2,自引:2,他引:0  
目的通过原位合成技术获得TiB_2-Ni(Al)复合粉末。方法采用机械合金化方法在不同球磨时间的条件下,制备不同体积含量的TiB_2陶瓷相增强Ni(Al)基复合粉末,其中Ni粉和Al粉的摩尔比为1:1。采用扫描电子显微镜(SEM)以及X-射线衍射仪(XRD)分析球磨后粉末的显微组织结构及物相,研究不同球磨时间对制备TiB_2-Ni(Al)复合粉末物相演变、组织结构及粒子间界面结合状态的影响。结果在球磨过程中,球磨时间越长,Ni/Al间的塑变有利于原子之间的扩散,TiB_2陶瓷相颗粒逐渐变小。当球磨时间增长到一定程度时,延展性好的Al粉颗粒发生扁平化且其表面积不断增大,使得碎化后的Ni粉颗粒不断嵌入Al粉颗粒中,最终形成Ni(Al)固溶体。同时根据XRD分析发现,随着球磨时间的延长,TiB_2-Ni(Al)复合粉末中的Al峰逐渐减小,说明Al不断固溶到Ni中,形成了一定量的Ni(Al)固溶体。结论通过机械球磨技术在球磨一定时间后可原位合成Ni(Al)固溶体,这说明随着Ni与Al之间的相互扩散有利于形成Ni(Al)固溶体。  相似文献   

12.
利用高能球磨和后续热处理技术制备纳米晶Fe5A150(摩尔分数,%)合金粉体。采用X射线衍射、透射电镜和扫描电镜对元素混合粉在机械合金化过程中的结构演变及热处理对合金化粉体结构的影响等进行分析,讨论其机械合金化合成机制。结果表明:球磨过程中Al向Fe中扩散,形成Fe(A1)固溶体。机械合金化合成Fe(Al)遵循连续扩散混合机制;球磨30h后,粉体主要由纳米晶Fe(A1)构成,晶粒尺寸5.65nm;热处理导致Fe(A1)纳米晶粉体有序度提高,转变为有序的B2型FeAl金属间化合物,粉体的晶粒尺寸增大,但仍在纳米尺度范围。  相似文献   

13.
陈枭 《表面技术》2017,46(11):248-253
目的通过原位合成技术获得Ti(Al,C)复合粉末。方法在不同球磨时间条件下,采用机械合金化方法制备Ti(Al,C)复合粉末,其中Ti粉和Al粉的摩尔比为1:1。采用扫描电子显微镜(SEM)以及X-射线衍射仪(XRD)分析球磨后粉末的显微组织结构及物相,研究不同球磨时间对制备Ti(Al,C)复合粉末物相演变、组织结构及粒子间界面结合状态的影响。结果在球磨过程中,球磨时间越长,粉体的粒径越小,当球磨时间增长到一定程度时,延展性好的Al粉颗粒发生扁平化且其表面积不断增大,使得碎化后的Ti粉颗粒不断嵌入至Al粉颗粒中,最终形成Ti(Al)固溶体。同时根据XRD分析发现,随着球磨时间的延长,Ti(Al,C)复合粉末中的Al峰逐渐减小,说明Al不断固溶到Ti中,形成了一定量的Ti(Al)固溶体。结论通过机械球磨技术在球磨一定时间后可原位合成Ti(Al)固溶体,这说明随着Ti与Al之间的相互扩散,有利于形成Ti(Al)固溶体。  相似文献   

14.
以Fe2O3粉、Si粉和Al粉为原料,采用反应机械合金化/退火法制备出了Al2O3/Fe3Si纳米复合粉体。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对复合粉体球磨以及退火过程中的固态反应过程、表面形貌进行表征。研究表明,Fe2O3-Si-Al混合粉体球磨5 h后发生反应生成Al2 O3、Fe5 Si3、Fe3 Si、FeSi,球磨20 h后生成Al2 O3/Fe3 Si,球磨20 h的粉体在900℃条件下退火1 h的组成物相未发生变化,复合粉体颗粒呈球形,其尺寸为5μm左右,分布均匀,组成相Al2O3和Fe3Si的晶粒尺寸分别为26.6 nm和28.3 nm。  相似文献   

15.
采用高能球磨法制备Al89.5Fe6 .4V0 .7Si2 .4Nd合金粉末 ,并用X射线衍射技术研究了球磨过程中的组成。发现经 60h高能球磨 ,合金粉末的微观组织由Al非晶和Al3V相组成 ;Al V合金的预磨状态影响Al89.5Fe6 .4 V0 .7Si2 .4Nd合金机械合金化过程中显微组织演化。  相似文献   

16.
借助X射线衍射及透射电镜研究了MmNi(5-x)(Co,AI,Mn)x/Mg混合粉末在高能球磨过程中的相交及其结构变化,证实高能球磨过程中MmNi(5-x)(Co,Al,Mn)x与Mg之间发生了固态反应,并最终形成了纳米相复合结构.通过精确测定点阵常数和用Miedema方法估算反应的生成热,给出了可能的固态反应的反应式吸氢特性测定表明球磨制备的纳米相复合储氢合金有较好的性能通过对球磨后再退火的样品进行分析,进一步研究了所获得纳米相复合结构稳定性及其相交  相似文献   

17.
Porous FeAl-based intermetallics were fabricated by thermal explosion (TE) from Fe and Al powders. The effects of sintering temperature on phase constitution, pore structure and oxidation resistance of porous Fe-Al intermetallics were systematically investigated. Porous Fe-Al materials with high open porosity (65%) are synthesized via a low-energy consumption method of TE at a temperature of 636 °C and FeAl intermetallic is evolved as dominant phase in sintered materials at 1000 °C. The porous materials are composed of interconnected skeleton, large pores among skeleton and small pores in the interior of skeleton. The interstitial pores in green powder compacts are the important source of large pores of porous Fe-Al intermetallics, and the in-situ pores from the melting and flowing of aluminum powders are also significant to the formation of large pores. Small pores are from the precipitation of Fe-Al intermetallics particles. In addition, the porous specimens exhibit high resistance to oxidation at 650 °C in air.  相似文献   

18.
Powder metallurgy processes are suitable to produce form-stable solid−liquid phase change materials from miscibility gap alloys. They allow to obtain a composite metallic material with good dispersion of low-melting active phase particles in a high-melting passive matrix, preventing leakage of the particles during phase transition and, therefore, increasing the stability of thermal response. Also, the matrix provides structural properties. The aim of this work is to combine conventional powder mixing techniques (simple mixing and ball milling) to improve active phase isolation and mechanical properties of an Al−Sn alloy. As matter of fact, ball milling of Sn powder allows to reduce hardness difference with Al powder; moreover, ball milling of the two powders together results in fine microstructure with improved mechanical properties. In addition, different routes applied showed that thermal response depends on the microstructure and, in particular, on the particle size of the active phase. In more detail, coarse active phase particles provide a fast heat release with small undercooling, while small particles solidify more slowly in a wide range of temperature. On the other hand, melting and, consequently, heat storage are independent of the particle size of the active phase. This potentially allows to “tailor” the thermal response by producing alloys with suitable microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号