首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The adhesion strength of high-velocity oxyfuel thermally sprayed coatings is of prime importance when thick coatings are to be sprayed in repair applications. In this study, relationships between process parameters, particle in-flight characteristics, residual stresses, and adhesion strength were explored. The most important process parameters that influence HVOF sprayed IN718 coating adhesion strength on IN718 substrate material were identified. Residual stress distributions were determined using the modified layer removal method, and adhesion strength was measured using an in-house-developed tensile test. Relationships between process parameters, particle in-flight characteristics, coating microstructure, and adhesion strength were established. Particle temperature, particle velocity, substrate preparation, and deposition temperature were identified as critical parameters to attain high adhesion strength. Controlling these parameters can significantly improve the adhesion strength, thus enabling thick coatings to be sprayed for repair applications.  相似文献   

2.
Sputtered Ni + TiB2 coatings have been shown to protect Inconel* 718 and Ti-6A1-4V substrates from solid particle erosion. However, before new erosion-resistant coatings can be efficiently designed, it is essential that the role of mechanical properties in determining erosion resistance be fully understood. In this investigation, nanoindentation techniques were used to quantify the effects of substrate preparation, coating composition, and sputtering process parameters on the elastic moduli and indentation hardness of thin coatings deposited on Ti-6A1-4V and Inconel 718 substrates. The influence of these parameters on coating adhesion was determined using a conventional scratch test. Elastic moduli, indentation hardnesses, and coating adhesion were correlated with erosion behavior. The erosion resistance of those coatings that exhibited microscopic ductility is dependent on the nodule diameter and coating properties such as hardness, elastic modulus, and fracture toughness. Inconel 718 is a trademark of The International Nickel Co.  相似文献   

3.
The module of elasticity is one of the most important mechanical properties defining the strength of a material which is a prerequisite to design a component from its early stage of conception to its field of application. When a material is to be thermally sprayed, mechanical properties of the deposited layers differ from the bulk material, mainly due to the anisotropy of the highly textured coating microstructure. The mechanical response of the deposited layers significantly influences the overall performance of the coated component. It is, therefore, of importance to evaluate the effective module of elasticity of the coating. Conventional experimental methods such as microindentation, nanoindentation and four-point bending tests have been investigated and their results vary significantly, mainly due to inhomogeneous characteristics of the coating microstructure. Synchrotron radiation coupled with a tensile test rig has been proposed as an alternative method to determine the coating anisotropic elastic behavior dependence on crystallographic orientations. The investigation was performed on Inconel 718 (IN718) HVOF coatings sprayed on IN718 substrates. Combining these experimental techniques yield a deeper understanding of the nature of the HVOF coating Young’s modulus and thus a tool for Design Practice for repair applications.  相似文献   

4.
NiCrBSi and Ni-50Cr coatings were deposited using the high velocity oxygen fuel (HVOF) spray process under different spray parameters with two powders of different sizes to clarify the influence of the melting state of spray particles on the adhesive strength of the coating. The adhesive strength of the coating was estimated according to the American Society for Testing and Materials (ASTM) C633-79. The melting state of the spray droplet was examined from the coating microstructure. It was found that the melting state of spray particles had a significant effect on the adhesive strength of HVOF sprayed Ni-based coatings. The significant melting of the spray particle did not contribute to the increase in the adhesion of HVOF metallic coatings. On the other hand, the deposition of a partially melted large particle contributed to the substantial improvement of adhesive strength of the HVOF coating. The subsequent coating presented a dense microstructure and yielded an adhesive strength of more than 76 MPa, which was double that of the coating deposited with completely molten particles. It can be suggested that the good melting of the spray particle is mainly related to the mechanical interlocking effect, which reaches the limited and approximately defined adhesive strength up to 40–50 MPa.  相似文献   

5.
In this study, flame sprayed Al-12Si coatings were produced on the surface of inlays (aluminum profiles) of composite castings parts. The aim was to enhance the strength between the joining partners inlay and cast. Due to the high surface roughness and the presence of pores in the coatings, combined with the formation of an intermetallic phase at the interface, the adhesion of flame sprayed inlays could be enhanced by a factor of 2 compared to blank inlays and by a factor of 1.3 when compared to sand-blasted inlays. However, results also show that gaps are present, mostly at the interface between the inlays and the flame sprayed coatings, and these gaps have a negative effect on the joining strength of the composite casting parts. Therefore, optimizing the adhesion of the coating on the Al profiles via an improvement in both the sand-blasting and the flame spraying parameters would be beneficial for further enhancement of the adhesion of composite casting parts.  相似文献   

6.
A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.  相似文献   

7.
等离子喷涂ZrO2热障涂层工艺参数优化设计   总被引:10,自引:0,他引:10  
为了深入研究等离子喷涂ZrO2粒子的飞行特征与涂层性能之间的关系,采用三水平四因素正交试验法对主气、辅气、电流及喷涂距离等4个主要参数进行了优化设计,并采用DPV2000热喷涂在线监测仪测定了ZrO2粒子的飞行特征参数,通过IA32定量金相分析软件对涂层的孔隙率进行了测试。结果表明,影响ZrO2粒子温度的主要因素为主气和辅气,影响ZrO2粒子飞行速度的主要因素为喷涂距离和辅气。  相似文献   

8.
In present paper the influence of the tungsten carbide (WC) particle addition on the microstructure, microhardness and abrasive wear behaviour of flame sprayed Co-Cr-W-Ni-C (EWAC 1006) coatings deposited on low carbon steel substrate has been reported. Coatings were deposited by oxy-acetylene flame spraying process. Wear behaviour of coatings was evaluated using pin on flat wear system against SiC abrasive medium. It was observed that the addition of WC particle in a commercial Co-Cr-W-Ni-C powder coating increases microhardness and wear resistance. Wear behaviour of these coatings is governed by the material parameters such as microstructure, hardness of coating and test parameters (abrasive grit size and normal load). Addition of WC in a commercial powder coating increased wear resistance about 4-9 folds. WC modified powder coatings showed better wear resistance at high load. Heat treatment of the unmodified powder coatings improved abrasive wear resistance while that of modified powder coating deteriorated the wear resistance. SEM study showed that wear of coatings largely takes place by microgroove, crater formation and scoring. Electron probe micro analysis (E.P.M.A.) of unmodified and WC modified powder coating was carried out for composition and phase analysis.  相似文献   

9.
A titanium composite coating containing in situ synthesized oxides or nitrides was deposited on mild steel by reactive atmospheric plasma spraying. The relationships between the porosity, hardness, the phase composition of the sprayed coatings, and the spraying parameters were investigated. Titanium powders were used as starting powder materials. XRD analysis and microhardness test revealed that titanium oxides and nitrides were synthesized during the spraying process. The longer the spraying distance, the more the Ti nitrides’ content in the coating. It is shown that the Ti nitrides’ content has a significant influence on coating hardness. An in situ titanium composite coating with a hardness value of 1534HV0.1 and an adhesive strength of 55.4 MPa was made with appropriate spraying parameters.  相似文献   

10.
Ti28.35Al63.4Nb8.25 (at.%) intermetallic compound coatings were sprayed onto 316 L stainless steel substrates by HVOF processes using various parameters. By varying the grit blasting pressure between 0.11 and 0.55 MPa, the effects of substrate roughness on the adhesion of TiAlNb thermal sprayed coatings were investigated. The microstructure, porosity and microhardness of the coatings were characterized by SEM, XRD, Image Analysis and Vickers hardness analysis. The tensile adhesion test (TAT) specified by ASTM C 633-79 was used to measure the tensile bonding strength of the coating. The results show that the coatings with substrate roughness of 8.33 μm displayed the best combined strength. TiAlNb coatings had a lamellar microstructure with different spraying parameters. The porosity, bonding strength, microhardness of coatings were assessed in relation to the spraying processes. The thickness of bond coat on the bond strength of coatings was also discussed.  相似文献   

11.
研究工艺参数对等离子喷涂纳米结构ZrO2陶瓷涂层微观组织和力学性能的影响,采用三因素三水平正交试验法对喷涂电压、电流和主气流速三个主要参数进行了优化设计.采用定量金相分析法分析了涂层未熔化区域的大小,并测定了涂层的结合强度、裂纹扩展抗力和磨损性能.结果表明,制备纳米结构ZrO2陶瓷涂层的最佳工艺参数为电流540A,电流63V,主气流量45 L/min.  相似文献   

12.
《Acta Materialia》2001,49(11):1993-1999
Changes in processing parameters strongly affect the structure and properties of thermally sprayed coatings and, consequently, their performance. Residual stress in the deposits is a factor that needs consideration, since it has direct influence on the processability and integrity of the sprayed material. In order to enhance the understanding of this phenomenon, a study of measurements of residual stresses on a single particle level was undertaken. The deposit is built-up with the successive impingement of micron-sized droplet and therefore an understanding of the single splat microstructure and properties will provide a fundamental understanding of the underlying mechanisms. Residual stresses in thin coatings, as well as isolated particles—splats—deposited on stainless steel substrates were investigated using X-ray microdiffraction. Plasma sprayed molybdenum and cold sprayed copper were studied. The key process parameters considered were: in-flight particle energy and substrate temperature in the first case, and particle velocity in the latter. The results will be discussed with respect to the influence of each of these parameters, contribution of quenching and thermal stress component and splat formation. Further, the coating build-up from individual particles and the associated factors influencing residual stress will be discussed.  相似文献   

13.
An evaluation of microstructure-property relationship is important for thermally sprayed composite absorber coatings, because self-similarity in the microstructure is a key characteristic that can affect coating properties, such as flattened particle shape, pores, absorbent phase, and coating thickness. In this paper, a multiscale effective fractal model is reported to characterize the microstructure-property relationship for high-velocity oxygen fuel (HVOF) sprayed composite coatings. It shows the fractal of coating structure was presented to calculate the volume fraction of thermally sprayed absorber coatings with wavelet-fractal algorithm. As an example, the flattened particle shape, porosity, and thickness were researched for the microwave reflectivity coefficient of HVOF sprayed nanometer LBS (Li2O-B2O3-SiO2)-SiCβ composite coatings. The modeling approaches to establishing the relationships between coating microstructure and absorbing property was checked.  相似文献   

14.
The adhesion mechanism of deposit/substrate interface prepared by the cold spray method is not fully understood at present. It seems that the adhesion strength is mainly determined by the mechanical (including the plastic deformation of particle and substrate) and thermal interaction between particle and substrate when the particles impact onto the substrate with a high velocity. In order to understand the adhesion mechanism, a novel adhesive strength test was developed to measure the higher bonding strength of cold sprayed coatings in this study. The method breaks through the limits imposed by glue strength in the conventional adhesive strength test, and it can be used to measure the coatings with a higher adhesive strength. The particle velocity was obtained with DPV-2000?measurement and CFD simulation. The relationships between the adhesion strength of deposits/substrate interface and particle velocity were discussed. The results show that stronger adhesion strength can be obtained with the increase of particle velocity. There are two available ways to improve the adhesion strength. One is to increase the temperature of working gas, and another is to employ helium gas as the working gas instead of nitrogen gas.  相似文献   

15.
目的研究不同气氛条件下激光熔覆IN718高温合金涂层的微观偏析。方法利用激光熔覆技术,在不同送粉气和不同保护气条件下制备了IN718高温合金涂层,并对制备的涂层进行双时效热处理。采用光学显微镜观察显微组织结构和特征,采用扫描电镜和能谱仪对涂层组织和相成分进行分析,采用维氏硬度计对涂层热处理前后的硬度进行测定。结果送粉气种类对熔覆层的形貌和组织有一定影响,而保护气种类对熔覆层的形貌和组织影响不明显。与氩气作为送粉气制备的涂层相比,氦气作为送粉气制备的涂层组织更加细密,Laves相的尺寸更小且分布更均匀,Laves相的体积分数由氩气送粉的9.35%减少到氦气送粉的5.25%,并且Laves相中Nb的质量分数由20%下降到16%,涂层硬度由287HV0.2提高到306HV0.2。双时效热处理后,涂层的显微硬度明显提高,氦气作为送粉气制备的涂层硬度为468HV0.2,高于氩气作为送粉气制备的涂层硬度447HV0.2。结论氦气作为送粉气能有效降低激光熔覆IN718涂层的Nb元素偏析,同时细化涂层组织,提高涂层显微硬度。氦气作为保护气对涂层形貌和组织的影响不明显。  相似文献   

16.
The cold spray technique was to deposit Al-12Si coatings on AZ31 magnesium alloy. The influence of gas pressure and gas temperature on the microstructure of coatings was investigated so as to optimize the process parameters. OM, SEM, and XRD were used to characterize the as-sprayed coatings. Mechanical properties including Vickers microhardness and adhesion strength were measured in order to evaluate coating quality. Test results indicate that the Al-12Si coatings possess the same crystal structure with powders, sufficient thickness, low porosity, high hardness, and excellent adhesion strength under optimal cold spray process parameters.  相似文献   

17.
为使AlSi-20%Al/Ni超音速等离子喷涂涂层获得优良的结合性能,采用正交实验法研究了喷涂距离、喷涂电压、喷涂电流等喷涂工艺参数对结合强度的影响。利用X射线衍射、扫描电镜等手段对涂层的相组成和断口形貌进行分析,利用WDW-E100D微机控制式万能拉伸试验机对涂层结合强度进行测试。结果表明:涂层由AlSi和AlNi两相组成,影响AlSi-20%Al/Ni涂层结合强度工艺参数的主次顺序为喷涂距离、喷涂电压、喷涂电流,优化后的工艺参数为主气流量3.2m3/h,喷涂电流为380A,喷涂电压为130V,喷涂距离为90mm,在此参数下制备的涂层组织致密,其结合强度为65.5MPa。  相似文献   

18.
Gas turbines provide one of the most severe environments challenging material systems nowadays. Only an appropriate coating system can supply protection particularly for turbine blades. This study was made by comparison of properties of two different types of thermal barrier coatings (TBCs) in order to improve the surface characteristics of high temperature components. These TBCs consisted of a duplex TBC and a five layered functionally graded TBC. In duplex TBCs, 0.35 mm thick yittria partially stabilized zirconia top coat (YSZ) was deposited by air plasma spraying and ~0.15 mm thick NiCrAlY bond coat was deposited by high velocity oxyfuel spraying. ~0.5 mm thick functionally graded TBC was sprayed by varying the feeding ratio of YSZ/NiCrAlY powders. Both coatings were deposited on IN 738LC alloy as a substrate. Microstructural characterization was performed by SEM and optical microscopy whereas phase analysis and chemical composition changes of the coatings and oxides formed during the tests were studied by XRD and EDX. The performance of the coatings fabricated with the optimum processing conditions was evaluated as a function of intense thermal cycling test at 1100 °C. During thermal shock test, FGM coating failed after 150 and duplex coating failed after 85 cycles. The adhesion strength of the coatings to the substrate was also measured. Finally, it is found that FGM coating has a larger lifetime than the duplex TBC, especially with regard to the adhesion strength of the coatings.  相似文献   

19.
Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.  相似文献   

20.
Thermal barrier coating (TBCs) systems made of plasma sprayed zirconia are commonly used in gas turbine engines to lower metal components surface temperature and allow higher combustion temperature that results in higher fuel efficiency and environmentally cleaner emissions. Low thermal conductivity and long service life are the most important properties of these coatings. The objective of this work was to study the influence of a long-term heat treatment (i.e., 1200 °C/2000 h) on different characteristics of atmospheric plasma sprayed TBCs. Two zirconia feedstock materials were evaluated, namely, yttria partially stabilized zirconia and dysprosia partially stabilized zirconia. Several spray conditions were designed and employed to achieve different coating morphologies. Microstructure analyses revealed that the coating microstructure was significantly dependent on both operating conditions and heat treatment conditions. Significant changes in coatings porosity occurred during heat treatment. The lowest thermal conductivity was reached with the dysprosia partially stabilized zirconia material. Heat treatment affected TBCs adhesion strength as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号