首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WC-(W,Cr)2C-Ni coating was prepared by high velocity oxy-fuel spraying (HVOF). The microstructure and phase composition of the as-sprayed coating and that after oxidation at high temperature were analyzed by means of scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The oxidation behavior of as-sprayed coating and starting powders was evaluated by thermogravimetry. Dry sliding friction and wear behavior of the WC-(W,Cr)2C-Ni coating sliding against Si3N4 ball at different temperatures (room temperature 20 °C and elevated temperature of 700 °C and 800 °C) was evaluated using an oscillating friction and wear tester. Besides, the microhardness and fracture toughness of the coating was also measured. Results show that sintering agglomerated WC-20 wt.%Cr-7 wt.%Ni powder is an effective method to prepare agglomerated and sintered WC-(W,Cr)2C-Ni composite powder. The excellent oxidation resistance of WC-(W,Cr)2C-Ni coating is mainly resulted from a double-decker shell-core microstructure formed in the coating. The composition of the outer shell is (W,Cr)2C phase and that of the inner shell is Cr3C2. During high-temperature friction and wear test, well remained hard WC phase in the WC-(W,Cr)2C-Ni coating can guarantee its good mechanical properties and wear resistance, and newly generated nano NiWO4, CrWO4 and Cr2WO6 particles can further improve these properties significantly.  相似文献   

2.
WC-(W,Cr)2C-Ni coating was prepared on 1Cr18Ni9Ti stainless steel and C-276 Ni-base Hastelloy by high velocity oxy-fuel(HVOF)spraying.The effect of post heat treatment in air atmosphere on the microstructure,phase composition,microhardness,fracture toughness,and wear resistance of HVOF-sprayed WC-(W,Cr)2C-Ni coating was investigated.The microstructure and phase composition of the coatings were analyzed by means of field emission scanning electron microscopy(FESEM)and X-ray diffraction(XRD).The microhardness and fracture toughness of the coatings were measured using a microhardness tester and a Vickers hardness tester.Moreover,dry friction and wear behavior of the coatings sliding against Si3N4 ball was investigated using an oscillating friction and wear tester;and the worn surfaces of the coatings were analyzed by means of scanning electron microscopy(SEM).It was found that heat treatment within 500-800°C resulted in crystallization of amorphous phase in as-sprayed coating,generating nanoscale new phases such as NiWO4,CrWO4 and Cr2WO6.Besides,heat treatment led to increase of the microhardness of as-sprayed coating,and the highest microhardness was obtained after heat treatment at 800°C.The fracture toughness and wear resistance of the as-sprayed coating increased with increasing heat treatment temperature up to 700°C but tended to decrease with further elevating temperature.In other words,the mechanical properties and wear resistance of the as-sprayed coatings were worsened owing to excessive growth of oxidation grains and depletion of ductile Ni binder after heat treatment above 700°C.Thus it was suggested that as-sprayed ceramic composite coating should be post heat treated in air at a moderate temperature of 700°C so as to achieve the optimized mechanical properties and wear resistance.  相似文献   

3.
The composition WC-(W,Cr)2C-Ni is one of the standard compositions used for the preparation of thermally sprayed coatings by high velocity oxy-fuel (HVOF) spraying. Surprisingly, this composition has been poorly investigated in the past. Frequent use of commercial designations WC-‘CrC’-Ni, WC-Cr3C2-Ni, and WC-NiCr indicates the insufficient knowledge about the phase compositions of these powders and coatings. The properties of these coatings differ significantly from those of WC-Co and WC-CoCr coatings. In this paper, the results of different series of experiments conducted on HVOF-sprayed WC-(W,Cr)2C-Ni coatings are compiled and their specific benefits pointed out. The focus of this study is on the analysis of the microstructures and phase compositions of the feedstock powders and coatings. Unlike WC-Co and Cr3C2-NiCr, WC-(W,Cr)2C-Ni is not a simple binary hard phase—binder metal composite. The phase (W,Cr)2C with unknown physical and mechanical properties appears as a second hard phase, which is inhomogeneously distributed in the feedstock powders and coatings. As examples of coating properties, the oxidation resistance and dry sliding wear properties are compared with those of WC-10%Co-4%Cr coatings.  相似文献   

4.
Rare earth has been widely used in materials manufacturing to improve hardness and toughness. In this paper, conventional, nanostructured, and rare earth CeO2-doped WC-12Co powders were sprayed by using HVOF spraying technology. Microstructure, hardness, elastic modulus, and fracture toughness of the three coatings were investigated. The results showed that nanostructured WC-12Co coatings possessed the densest microstructure and excellent combination of strength and toughness. The WC particles with the size ranging from 50 to 500 nm distributed uniformly in the nanostructured WC-12Co coating. The average free path of Co matrix in rare earth-doped WC-12Co coating was shorter than that of conventional WC-12Co coating. XRD results showed no obvious decarburization in all three coatings. The addition of rare earth could improve the mechanical properties of the coating compared with that without rare earth. The hardness value of nanostructured WC-12Co coating (12.2 GPa) was similar to that of rare earth-doped WC-12Co coating (12.2 GPa), which was 15.1% higher than that of conventional WC-12Co coating. The elastic modulus and fracture toughness of nanostructured WC-12Co coating were the highest, and that of conventional WC-12Co coating was the lowest.  相似文献   

5.
The composition WC-(W,Cr)2C-Ni (commercial designations WC-‘CrC’-Ni, WC-Cr3C2-Ni and WC-NiCr) is unique among the WC-based materials used for the preparation of thermally sprayed hardmetal coatings. These coatings show a significantly higher oxidation resistance and high-temperature sliding wear resistance than WC-Co and WC-CoCr coatings do. Unlike WC-Co and Cr3C2-NiCr, WC-(W,Cr)2C-Ni is not a simple binary hard phase-binder metal composite as it is composed of two hard phases: WC and (W,Cr)2C. Surprisingly this composition has been poorly investigated in the past.In this paper coating microstructures and properties obtained from five commercial feedstock powders of different origins using two different liquid-fuelled high velocity oxy-fuel (HVOF) systems (K2 and JP-5000) were investigated. Additional experiments were performed with one powder using atmospheric and vacuum plasma spraying (APS and VPS, respectively). The microstructures and phase compositions of the powders and the coatings were studied. Focus was on the appearance, composition and distribution of the (W,Cr)2C phase which might form or might change its Cr/W ratio during the spray process. The composition of the (W,Cr)2C phase was estimated from the lattice parameters. Hardness HV0.3 was measured for all coatings. The density, Young's modulus and abrasion wear resistance of HVOF-sprayed coatings were studied.  相似文献   

6.
In the present study, WC-12Co coatings were deposited by detonation-spraying technique using conventional and nanostructured WC-12Co feedstock at four different oxy/fuel ratios (OF ratio). The coatings exhibited the presence of phases like W2C and W due to the decarburization of the WC phase, and the proportions of these phases were higher in the nano WC-12Co coatings compared with conventional WC-12Co coatings. Coating hardness and fracture toughness were measured. The tribological performance of coatings was examined under dry sand rubber wheel abrasion wear, and solid particle erosion wear conditions. The mechanical and wear properties of coatings were influenced by degree of decarburization and more so in the case of nanostructured WC-Co coatings. The results indicate that the extent of decarburization has a substantial influence on the elastic modulus of the coating which in turn is related to the extent of intersplat cracking of the coating.  相似文献   

7.
为进一步提高爆炸喷涂WC-12Co涂层的耐磨性,在WC-12Co合金粉末中添加不同比例的MoS2粉末,利用爆炸喷涂技术在Q235钢表面制备了系列WC-12Co/MoS2复合涂层.采用金相显微镜、扫描电子显微镜、X射线衍射仪、显微硬度计及摩擦磨损试验机对WC-12Co/MoS2复合涂层的微观组织形貌、结构、显微硬度、摩擦磨损性能进行了研究.结果表明,MoS2均匀的分布于复合涂层中,当MoS2含量为2%时,复合涂层的硬度、致密度变化不大,但摩擦系数和磨损率大幅度下降,分别为WC-12Co涂层的50%和36%.随着MoS2含量的增加,复合涂层的摩擦系数和磨损率均呈上升趋势.  相似文献   

8.
超音速火焰喷涂(HVOF)制备的WC基金属陶瓷涂层广泛应用于金属构件的磨损、腐蚀及空蚀防护。分别采用氢气燃料及煤油液体燃料HVOF喷涂设备分别在9种不同的工艺条件下制备了WC10Co4Cr涂层,研究了燃料类型对涂层的组织、残余应力及力学性能的影响规律。在两种燃料HVOF工艺各自优化的喷涂参数条件下,通过对基体曲率的原位监测对比测试了涂层中的平均残余应力;利用显微维氏硬度、压痕法(断裂韧性)和球盘摩擦磨损对比研究了涂层的力学性能。结果表明:液体燃料(LF)HVOF焰流中粒子的温度更低,速度更高。LF-HVOF喷涂的WC10Co4Cr涂层内的残余压应力更高且涂层致密度更高,而气体燃料(GF)HVOF喷涂的WC10Co4Cr涂层内为残余拉应力。LF-HVOF涂层(1280 HV0.3, 7.3 MPa·m0.5)比GF-HVOF涂层(1032 HV0.3, 4.5 MPa·m0.5)具有更高的硬度和断裂韧性,LF-HVOF涂层的耐磨性约为GF-HVOF涂层的1.7倍。  相似文献   

9.
以低成本压缩空气和丙烷作为工作气体,采用超音速等离子喷涂制备了WC-17Co涂层,研究了喷涂功率对涂层组织、孔隙率和相组成的影响,测试了涂层的抗压性和耐磨性.结果表明,喷涂功率显著影响粉末的熔化和脱碳程度,功率过小时,WC颗粒熔化程度低;功率过大时,WC严重脱碳生成W2C甚至W相.喷涂功率为65 kW制备的涂层孔隙率最低(0.87%),未出现严重脱碳产物钨,涂层具有很强的抗压入变形能力,由于高硬度WC颗粒的存在,涂层的耐磨性显著提高,其磨损量仅为基体的15%,磨损形式由基体的严重磨粒磨损+粘着磨损变为涂层的轻微磨粒磨损.  相似文献   

10.
超音速火焰喷涂WC-10Co4Cr涂层的耐滑动磨损行为   总被引:1,自引:0,他引:1  
采用超音速火焰喷涂(HVOF)工艺制备微米结构WC-10Co4Cr涂层,分别采用金相显微镜、扫描电镜(SEM)、X射线衍射(XRD)和滑动磨损设备分析涂层的微观结构和滑动磨损行为。结果表明:采用液体煤油燃料HVOF喷涂的微米结构WC-10Co4Cr涂层的脱碳程度较低,涂层中仅出现WC和W2C相,而无η相(Co3W3C、Co6W6C)以及软相W。涂层微观结构致密,孔隙率约为1%,平均显微硬度为1 322HV0.3;在相同试验条件下,WC-10Co4Cr涂层的摩擦因数(约0.8)高于不锈钢(1Cr18Ni9Ti)的摩擦因数(约0.5),其滑动体积损失量仅为不锈钢涂层的1/146,具有优异的抗滑动磨损性能。涂层在滑动磨损过程中首先是粘结相的脱落,然后是WC颗粒的磨损。  相似文献   

11.
利用真空原位还原碳化反应合成超细/纳米WC-Co复合粉末,通过添加一定量Cr获得WC-10Co-4Cr复合粉末,经团聚造粒获得喷涂用复合粉末喂料,采用超音速火焰(HVOF)喷涂系统制备出超细/纳米结构的WC-10Co-4Cr涂层。利用X射线衍射仪,扫描电子显微镜和透射电子显微镜对涂层的物相、显微组织结构、元素分布特征等进行了系统表征,并对涂层耐磨性、耐蚀性进行了测试分析。结果表明:基于原位反应合成WC-Co复合粉制备的超细/纳米结构WC-10Co-4Cr涂层具有较好的耐磨性和耐腐蚀性。涂层以WC为主相,含有非晶结构的粘结相Co(Cr),同时存在少量六方晶体结构的W_2C相和非晶复相W_2C+Co(Cr)。对涂层中元素Co和Cr的分布进行了量化分析,得到其从WC晶粒到相界到共晶区再到Co区的变化规律。结合WC-10Co-4Cr复合粉末和超音速火焰喷涂工艺的特点,阐释了Cr在WC-10Co-4Cr涂层分布状态的形成原因,并讨论了对涂层性能的影响。  相似文献   

12.
A comprehensive study of the phase composition, microstructure evolution, microhardness and wear performance of WC-12Co composite coatings fabricated by laser cladding using coaxial powder-feed mode was presented. It was shown that a combination of high scan speed and high laser energy density made WC on the edge of WC-12Co composite powders partially melt in liquid Co and 304 stainless steel matrix, and then new carbides consisting of lamellar WC and herringbone M3W3C (M=Fe, Co) were formed. Meanwhile, WC-12Co composite coatings with no porosity, cracks and drawbacks like decarburization were obtained, showing high densification and good metallurgical bonding with the substrate. Furthermore, a considerably high microhardness of HV0.3 1500-1600, low coefficient of friction of 0.55 and wear rate of (2.15±0.31)×10-7 mm3/(N·m) were achieved owing to the synergistic effect of excellent metallurgical bonding and fine microstructures of composite coating under laser power of 1500 W.  相似文献   

13.
本文利用超音速火焰喷涂技术喷涂四种不同粒径的WC-17Co粉末,评价粉末粒径对涂层机械性能和抗磨粒磨损性能的影响。结果表明,粉末的粒径越小,在超音速焰流作用下获得的速度和温度越高,形成的涂层越致密,颗粒间的粘接强度越高,同时涂层的显微硬度也越高。WC-17Co粉末的粒径越小,获得涂层的孔隙直径越小,颗粒间的粘接缺陷越少,因此涂层的抗磨粒磨损性能越好。但是当WC-17Co粉末的粒径过于微小时,涂层的断裂韧性将受到影响。在本文研究的四种粒径分布的WC-17Co粉末中,中间粒径且分布范围集中的粉末制得的涂层兼具良好的机械性能和抗磨粒磨损性能。  相似文献   

14.
Development of WC-Co Coatings Deposited by Warm Spray Process   总被引:1,自引:0,他引:1  
The high-velocity oxy-fuel (HVOF) process is commonly used to deposit WC-Co coatings. There are some problems with this process; especially the decomposition and decarburization of WC during spraying make a coating brittle. To suppress such degradation, the warm spray (WS) process was applied to deposit WC-Co coatings, which is capable of controlling the flame temperature in the range of 500-2000 °C. The microstructure and phases of the deposited coatings were characterized by using SEM and XRD, and the mechanical properties such as hardness, fracture toughness, and wear properties were also investigated. WS process successfully suppressed the formation of the detrimental phases such as W2C and W, which are usually observed in HVOF coatings. The WS coatings showed the similar trend of the hardness variation for Co content with a sintered bulk material. Improvement of toughness and wear behavior was also observed in WS coatings.  相似文献   

15.
WC-12%Co coatings were deposited by atmospheric plasma spraying using conventional and nanostructured powders and two secondary plasmogenous gases (He and H2). Coating microstructure and phase composition were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction techniques (XRD) techniques. This study examined wear and friction properties of the coatings under dry friction conditions. SEM was used to analyze abraded surface microstructure. Coating microhardness and fracture toughness were also determined. All coatings displayed strong decarburization as a result of WC decomposition, which gave rise to the formation of secondary phases (W2C and W). A very fine undissolved WC crystalline dispersion coexisted with these new phases. TEM observation confirmed that the matrix was predominantly amorphous and filled with block-type, frequently dislocated crystallites. Wear was observed to follow a three-body abrasive mechanism, since debris between the ball and the coating surface was detected. The main wear mechanism was based on subsurface cracking, owing to the arising debris. WC grain decomposition and dissolution were concluded to be critical factors in wear resistance. The level of decomposition and dissolution could be modified by changing the plasmogenous gas or feed powder grain size. The influence of the plasmogenous gas on wear resistance was greater than the influence of feedstock particle size.  相似文献   

16.
Thermally sprayed carbide-based coatings are nowadays extensively considered as an alternative to electrolytic hard chrome (EHC) coatings to reduce the environmental impact and the overall cost associated with EHC process. In this investigation, high-velocity oxy-fuel (HVOF) spray process was employed to prepare coatings using the traditional carbide powders namely the WC-10Co4Cr, the Cr3C2-25NiCr and a new type of mixed carbide powder WC-40Cr3C2-25NiCr. The Powder deposition rate, basic mechanical properties, abrasive wear, slurry erosion and corrosion resistance of the three coatings were then compared with the EHC coating. The results show that WC-10Co4Cr coating exhibited the highest hardness, abrasive wear and slurry erosion resistance followed by WC-40Cr3C2-25NiCr, EHC, and Cr3C2-25NiCr coating. The deposition efficiency of the powders as per hierarchy was found to be WC-40Cr3C2-25NiCr > WC-10Co4Cr > Cr3C2-25NiCr and all the HVOF sprayed coatings exhibited higher corrosion resistance than EHC coating. The highest powder deposition efficiency coupled with low density, acceptable tribo-corrosion performance, as well as low post processing cost makes the HVOF sprayed WC-40Cr3C2-25NiCr coating a potential candidate to replace the EHC coating.  相似文献   

17.
The detonation spraying is one of the most promising thermal spray variants for depositing wear and corrosion resistant coatings. The ceramic (Al2O3), metallic (Ni-20 wt%Cr) , and cermets (WC-12 wt%Co) powders that are commercially available were separated into coarser and finer size ranges with relatively narrow size distribution by employing centrifugal air classifier. The coatings were deposited using detonation spray technique. The effect of particle size and its distribution on the coating properties were examined. The surface roughness and porosity increased with increasing powder particle size for all the coatings consistently. The feedstock size was also found to influence the phase composition of Al2O3 and WC-Co coatings; however does not influence the phase composition of Ni-Cr coatings. The associated phase change and %porosity of the coatings imparted considerable variation in the coating hardness, fracture toughness, and wear properties. The fine and narrow size range WC-Co coating exhibited superior wear resistance. The coarse and narrow size distribution Al2O3 coating exhibited better performance under abrasion and sliding wear modes however under erosion wear mode the as-received Al2O3 coating exhibited better performance. In the case of metallic (Ni-Cr) coatings, the coatings deposited using coarser powder exhibited marginally lower-wear rate under abrasion and sliding wear modes. However, under erosion wear mode, the coating deposited using finer particle size exhibited considerably lower-wear rate.  相似文献   

18.
In this work, WC-12Co coatings were prepared by high-velocity oxygen fuel spraying (HVOF) technology. The high-temperature sliding wear tests at 450, 550 and 650 °C were conducted on a pin-on-disk tribometer, and effects of CeO2 on the high-temperature wear behavior were investigated. The results showed that CeO2-modified WC-12Co coating possessed better sliding wear resistance than that of conventional WC-12Co coating at the tested temperatures. The maximum microhardness value of 1333 ± 25HV0.5 was available at the temperature of 550 °C for CeO2-modified WC-12Co coating worn track. The oxides formed on the worn surface played a significant role on the wear behavior. W2C, Co3O4 and ratio of CoWO4/WO3 dominated the wear behavior of the coating at 450, 550 and 650 °C, respectively.  相似文献   

19.
The effects of mixing powders with various particle sizes on the fracture toughness and wear resistance of thermally sprayed WC-10Co-4Cr coating layers fabricated by the HVOF (High-Velocity Oxygen Fuel) process on a S45C steel substrate were investigated. In order to obtain a high fracture toughness and wear resistance, the powder size and powder mixing ratio were varied. The microstructure and chemical composition of the phases in the coatings were characterized by means of the SEM and XRD techniques. Image analysis was used for the evaluation of the porosity of the coatings. Indentations tests were carried out on the cross sections of the coatings to evaluate the hardness and fracture toughness. The wear properties of the coatings were assessed using a pin-on-disk wear tester at ambient temperature without lubrication. The mixing of a small amount of coarse powders with fine powders resulted in the highest fracture toughness and wear resistance, due to the formation of coating layers having the lowest porosity.  相似文献   

20.
WC-based cermet coatings containing various metallic binders such as Ni, Co, and Cr are known for their superior tribological properties, particularly abrasion resistance and enhanced surface hardness. Consequently, these systems are considered as replacements for traditional hard chrome coatings in critical aircraft components such as landing gear. The purpose of this investigation was to conduct a comparative study on the dry sliding wear behavior of three WC-based cermet coatings (WC-12Ni, WC-20Cr2C3-7Ni, and WC-10Co-4Cr), when deposited on carbon steel substrates. Ball on disk wear tests were performed on the coatings using a CSEM Tribometer (pin-on-disk) with a 6-mm ruby ball at 20 N applied load, 0.2 m/s sliding velocity, and sliding distances up to 2000 m. Analysis of both the coating wear track and worn ruby ball was performed using optical microscopy and an Alphastep-250 profilometer. The results of the study revealed both wear of the ruby ball and coated disks allowed for a comparison of both the ball wear and coating wear for the systems considered. Generally, the use of Co and Cr as a binder significantly improved the sliding wear resistance of the coating compared to Ni and/or Cr2C3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号