首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了获得质量优异的镁合金薄板材并研究铸轧工艺参数对AZ31镁合金薄板材的温度场和热应力场的影响,基于铸轧的对称性采用ANSYS软件建立了三维几何和有限元模型。在ANSYS软件中采用smart-sizing算法进行网格划分。进行了一系列不同工艺参数下的三维温度场和热应力数值模拟。结果表明,随着浇注温度的升高,液相区和液固两相区的长度都增加;随着辊/薄板间接触的对流换热系数的增大,液固两相区的长度减小;随着浇注温度和铸轧速度的提高,两相区的长度增大。将优化的工艺参数(铸造速度2m/min、浇注温度640℃、换热系数15kW/(m2·℃)及水淬)用于镁合金铸轧试验,得到平均晶粒尺寸为50μm的镁合金板坯。三维仿真结果能更好地理解相变区的温度变化和铸轧过程中热裂纹的形成机理,为设计和优化镁合金铸轧的工艺参数提供帮助。  相似文献   

2.
镁合金薄板快速铸轧过程有限元仿真研究   总被引:2,自引:1,他引:1  
为了研究铸轧工艺参数对AZ31镁合金薄板快速铸轧过程温度场和热应力场的影响,基于铸轧区板坯的对称性建立了纵截面1/2的二维几何模型;选择了基于热弹塑性增量理论的热应力控制方程;采用大型通用有限元分析软件ANSYS对镁合金快速铸轧过程中的铸坯温度场和热-应力场进行了仿真分析,并就不同工艺参数(浇注温度、接触界面换热系数、铸轧速度)对铸坯温度和应力的分布及其相变区的影响进行了研究。仿真结果增强了对镁合金快速铸轧过程相变区温度变化和热裂产生机制的理解,为快速铸轧工艺参数的优化提供了依据。  相似文献   

3.
为了获得汽车用AZ31镁合金板材的铸轧工艺参数,应用ANSYS软件对该过程进行模拟。结果表明,对φ500 mm的水平式铸轧机,铸轧速度1.6、1.8、2 m/min分别对应的浇注温度698、696、690℃为最佳铸轧工艺参数。  相似文献   

4.
半固态AZ31流变铸轧温度场数值模拟   总被引:2,自引:1,他引:1  
利用有限元方法对AZ31镁合金在半固态双辊铸轧成形工艺中的温度场进行了数值模拟。分析了铸轧工艺参数(轧辊表面对流换热系数、浇铸温度、浇铸速度)对镁合金板带质量的影响。结果表明,在浇铸温度降低到897K时,在10000W.m-2 K-1换热系数下镁合金熔体完全凝固点的位置前移,影响镁合金板带的质量;而将铸轧时间延长到0.465s可以加强熔体和铸辊换热,使得出口区域中心温度达到凝固点。  相似文献   

5.
针对AZ31镁合金,建立了铸轧过程二维直角坐标系下的热平衡方程。对浇注温度、铸轧速度、水冷强度、轧辊辊缝、轧辊辊径等采用5因素4水平的正交试验法进行了数值分析。采用ANSYS下的Fluent进行了铸轧过程温度场的模拟,讨论了镁合金带材铸轧因素对温度场的影响大小。分析结果表明,轧辊辊缝是显著性影响因素,显著性置信度为95%,其次为铸轧速度、水冷强度、轧辊辊径。  相似文献   

6.
根据相似性原理研制AZ31镁合金静液挤压实验模拟成形装置,在630kN液压机上以彩色塑性胶泥为模拟材料进行了静液挤压实验模拟,证明AZ31镁合金静液挤压成形工艺的可行性。应用Deform-3D有限元分析软件对直径3mm的镁合金丝进行了静液挤压成形工艺仿真研究,得到350℃镁合金静液挤压时温度场分布、应力应变分布及挤压力等技术数据,为AZ31镁合金静液挤压成形工艺及模具设计提供了理论依据。  相似文献   

7.
实验研究了经不同道次差温热轧AZ31镁合金的金相组织,结合对轧制过程,尤其是轧件温度场的数值模拟结果,分析了AZ31镁合金差温热轧过程晶粒细化机制与主要影响因素,获得了通过轧制过程动态再结晶,使轧材晶粒尺寸随轧制道次增加,而持续细化的工艺参数,并制备出平均晶粒尺寸为5μm左右的细晶AZ31镁合金板材。  相似文献   

8.
<正>20150101 Hadadzadeh A,Wells M A.AZ31镁合金带材双辊铸轧热力学行为数值模拟研究.Journal of Magnesium and Alloys,2013,1:101-114.双辊铸轧(TRC)工艺兼有铸造和热轧优势,是替代近净成形镁合金板材新型铸造工艺,其代表产品为厚2~10mm的镁合金板材。在双辊铸造工艺中,板材的冷却凝固速率范围为102~103℃/s,相对于直接连续铸造(DC),双辊铸轧的高冷却速率使轧辊铸造状态下AZ31合金的γ相分布更均匀。利用有限元软  相似文献   

9.
立式双辊铸轧镁合金薄带微观组织分析   总被引:1,自引:0,他引:1  
在实验室的立式双辊铸机上进行了AZ31B镁合金薄带的铸轧试验.研究了不同工艺下铸轧薄带微观组织,并对不同冷却方式下铸轧镁合金薄带微观组织进行了分析.结果表明,双辊铸轧镁合金晶粒细小、无共析现象发生.铸轧速度对板带的显微组织影响显著,当铸轧速度达到20 m/min时,镁合金薄带组织为理想等轴晶.对铸轧态镁合金薄带进行油冷,既防止了薄带表面氧化,又阻止了冷却过程晶粒长大.  相似文献   

10.
采用有限元方法计算铸轧过程中的宏观传输现象,用元胞自动机方法模拟微观凝固组织,将二者耦合模拟了双辊铸轧薄带凝固过程中晶粒的形核与长大过程,实现了对双辊铸轧薄带凝同过程组织演变的模拟;并以镁合金AZ31B为对象,研究了薄带铸轧工艺过程中的主要工艺参数(浇注温度、铸轧速度等)对镁合金薄带凝固组织的影响规律,从而为通过工艺优化来控制铸轧薄带的凝固组织提供了理论依据.  相似文献   

11.
为探索镁合金整体壁板压弯成形的可行性,以及镁合金壁板压弯成形过程中金属的流动规律,对AZ31镁合金网格壁板压弯成形进行了数值模拟和实验研究。建立了有限元数值模拟的几何模型,采用有限元计算软件对AZ31镁合金网格壁板压弯成形过程进行了数值模拟研究,分析了镁合金网格壁板压弯成形中的温度场、应变场、应力场、破坏系数等的分布规律。确定了合适的AZ31镁合金壁板压弯成形工艺参数,并对镁合金网格壁板压弯成形进行了实验研究,获得了合格的镁合金网格壁板弯曲件,并分析了镁合金网格壁板成形件尺寸精度,模拟结果与实验结果相吻合,最大相对误差为16.7%。  相似文献   

12.
根据AZ31镁合金流动应力-应变曲线建立了材料模型,应用Deform-3D软件对AZ31镁合金薄壁管材反挤压过程进行了有限元模拟,分析了挤压过程中坯料和管材内部温度场、损伤因子及流动速率的分布情况,着重探讨了不同挤压温度、挤压速度和模角对最高温升、等效应力、流动速率及挤压力峰值的影响。结果表明,AZ31镁合金薄壁管材反挤压的最佳工艺参数:挤压温度为310℃、挤压速度为1mm/s、模角为60°。  相似文献   

13.
提出采用三辊斜轧穿孔方法制备镁合金无缝管,基于AZ31镁合金塑性变形特点和斜轧穿孔成形原理分析,建立AZ31镁合金的力学模型,设定AZ31镁合金斜轧穿孔的工艺和模具参数。利用Deform-3D有限元分析软件对AZ31镁合金在300~400℃温度范围内进行斜轧穿孔数值模拟,得到各个成形阶段坯料的等效应力分布和金属流动速度矢量图。模拟结果表明在350℃、0.01 s-1变形条件下,AZ31镁合金斜轧穿孔保持稳定轧制。根据模拟结果进行试验验证,结果表明在此工艺条件下斜轧穿孔后的AZ31镁合金管力学性能良好,验证了斜轧穿孔制备镁合金无缝管的可行性和有效性,为镁合金无缝管新的生产方法提供理论依据。  相似文献   

14.
利用有限元方法对6063铝合金铸轧成型工艺中铸轧区的温度场及速度场进行了数值模拟,确定了合理的浇注温度及铸轧速度参数。模拟结果表明:对于轧辊直径为300 mm的上注式铸轧机,最佳的铸轧工艺参数为浇注温度690℃,铸轧速度10 m/min。该工况下对应的液穴深度为12 mm。  相似文献   

15.
用Geeble1500热模拟实验机模拟不同始轧温度、冷却强度以及变形量和应变速率下AZ31合金的铸轧行为.结果显示:AZ31镁合金铸轧组织对应变速率和变形量均具有较强的敏感性.当ε由0.005s-1增到0.1s-1时,铸轧组织的晶粒逐渐变小,同时晶界析出物减少.变形量ε由20%增加到50%时,晶粒组织细化明显.试验得出了AZ31镁合金连续铸轧工艺的边界工艺条件,在此条件下,获得铸轧板的力学性能如下:70 HV0.5,σb为210-240 MPa,σ0.2为180-200MPa,δ为3%-6%.  相似文献   

16.
数值模拟和试验研究了不同温度下半固态铸轧AZ31镁合金的铸轧过程温度场和微观组织。结果表明,在不同的铸轧温度下,铸轧过程温度场不相同,要顺利进行铸轧就需要不同的冷却系统。铸轧温度从高到低,半固态固相颗粒明显从小到大,固相率也变大。特别是在623℃到620℃之间固相率较高,固相颗粒接近球形,是典型的半固态组织。  相似文献   

17.
AZ31B镁合金板材轧制边裂与温度场研究   总被引:1,自引:0,他引:1  
在轧制温度为350℃,轧制速度为0.5 m/s,压下量分别为20%,30%,40%的不同工艺条件下,对规格为150mm×150 mm×7 mm的AZ31B镁合金铸轧板材进行了轧制实验和数值模拟研究。对镁合金板材的表面温度场和裂纹应力状态进行了分析,并建立了其表面温度梯度数学模型。分析在不同轧制条件下AZ31B镁合金板的边裂损伤和温度分布的有限元数值模拟结果以及轧后显微组织,并将数值模拟计算结果和实验结果进行比较。结果表明:在同一温度条件下,随着轧制压下量的增大,镁合金板塑性变形产生的热量增大,而小压下量条件容易促进MgZn2和Mg2Si等脆性相的产生。因此,减少长条形孪晶和脆性相产生是控制边部裂纹的关键因素之一。  相似文献   

18.
AZ31镁合金铸轧板材热拉深工艺研究   总被引:1,自引:1,他引:0  
用拉伸试验机测试了AZ31镁合金铸轧板材的高温力学性能和直角弯曲性能,并对镁合金铸轧板材进行了热拉深试验,研究了拉深温度、拉深速率、压边间隙、润滑方式等工艺参数对板材成形性能的影响。试验结果表明,AZ31镁合金铸轧板材适合于200℃以上拉深,且最小弯曲半径小于4mm,最佳拉深工艺条件为,拉深温度225℃~275℃,拉深速率50mm/min~100mm/min,压边间隙1.125t~1.15t,采用固体润滑剂PTFE,可以得到最大极限拉深比为2.95。  相似文献   

19.
张莹  倪泽联  韩婧潇  马强 《热加工工艺》2013,42(3):35-37,40
从流变学角度出发,运用Fluent软件对AZ31半固态镁合金流变铸轧过程进行了数值模拟.分别对4种不同的黏度模型进行了分析,得到了镁合金铸轧凝固过程的剪切速率图、黏度分布图和温度场.他们之间相互作用的关系是:表观黏度在一定范围内随温度的提高而降低,随剪切速率的提高而减小.结果表明,简单等温稳态黏度模型适用于剪切速率变化范围较宽的凝固模拟,而此种铸轧工况下较理想的黏度模型为Carreau黏度模型.  相似文献   

20.
AZ31镁合金薄带直接铸轧新工艺   总被引:15,自引:4,他引:15  
本文研究了AZ31镁合金薄带铸轧工艺过程。对铸轧状态AZ31镁合金显微组织进行分析。结果表明,利用薄带直接铸轧新工艺可消除偏析,极大的细化晶粒。并研究了组织形成机理。将镁合金薄带在240~300%进行热轧,最大压下率达到了50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号