首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gamma-aminobutyric acid (GABA) plays a pivotal role in suppressing the origin and spread of seizure activity. Low occipital lobe GABA was associated with poor seizure control in patients with complex partial seizures. Vigabatrin irreversibly inhibits GABA-transaminase, raising brain and cerebrospinal fluid (CSF) GABA concentrations. The effect of vigabatrin on occipital lobe GABA concentrations was measured by in vivo nuclear magnetic-resonance spectroscopy. Using a single oral dose of vigabatrin, the rate of GABA synthesis in human brain was estimated at 17% of the Krebs cycle rate. As the daily dose of vigabatrin was increased to up to 3 g, the fractional elevation of brain GABA was similar to CSF increase. Doubling the daily dose from 3 to 6 g failed to increase brain GABA further. Increased GABA concentrations appear to reduce GABA synthesis in humans as it does in animals. With traditional antiepileptic drugs, remission of the seizure disorder was associated with normal GABA levels. With vigabatrin, elevated CSF and brain GABA was associated with improved seizure control. Vigabatrin enhances the vesicular and nonvesicular release of GABA. The release of GABA during seizures may be mediated in part by transporter reversal that may serve as an important protective mechanism. During a seizure, this mechanism may be critical in stopping the seizure or preventing its spread.  相似文献   

2.
The aim of the present study was to investigate the release of amino-acids in human cerebral cortex during membrane depolarization and simulated ischaemia (energy deprivation). Superfluous tissue from temporal Iobe resections for epilepsy was cut into 500 microns thick slices and incubated in vitro. Membrane depolarization with 50 mM K+ caused a release of glutamate, aspartate, GABA and glycine, but not glutamine or leucine. The release of glutamate and GABA was Ca(++)-dependent. Slices were exposed to simulated ischaemia (energy deprivation; ED) by combined glucose/oxygen deprivation. This caused a Ca(++)-independent release of glutamate, aspartate, GABA, glycine, and taurine which started after 8 min, peaked at the end or shortly after the 27 min period of ED, and returned to control levels within 11 min following termination of ED. Preloaded D-[3H]aspartate was released both during K(+)-stimulation and ED. Release of D-[3H]aspartate during ED was delayed compared to glutamate supporting an initial phase of synaptic glutamate release. Uptake of L-[3H]glutamate was increased during the period of glutamate release, suggesting passive diffusion across the cell membrane or enhanced transport efficacy in cellular elements with functioning uptake mechanisms.  相似文献   

3.
Recent studies have revealed that a dynamic axon-glial signaling occurs in the rat optic nerve, which is devoid of synapses. This interaction is postulated to be mediated by non-vesicular release of glutamate via a reversal of high-affinity glutamate transporters. Here we examined the expression of glial glutamate transporters (GLAST and GLT-1) and a neuronal transporter (EAAC1) in the rat optic nerve. RT-PCR analysis revealed the presence of mRNAs for GLT-1 and GLAST, but not EAAC1. RNase protection assays showed that of the two glial transporters, mRNA for GLAST was expressed at much higher level than was GLT-1. A similar expression pattern was found in primary astrocyte culture cells. GLAST mRNA level in the optic nerve was comparable to that in the cerebellum. Developmentally, GLAST mRNA level was highest at P2 and dropped slightly by adulthood. Nerve transection resulted in little or no change in mRNA levels for GLAST and GLT-1 assayed at 4 to 14 days post-transection, but GLAST mRNA level was decreased at 64 days. Western blot analysis revealed that the rat optic nerve showed immunoreactivity to antibodies against GLT-1, GLAST, and EAAC1. In conclusion, we suggest that glial and neuronal transporters are present in the rat optic nerve, where dynamic axon-glial interaction has been known to occur. In particular, the unusually high level of expression of GLAST in the optic nerve suggests a possible role for this glial transporter in protecting optic nerves from neurotoxicity during postnatal development.  相似文献   

4.
A transporter thought to mediate accumulation of GABA into synaptic vesicles has recently been cloned (McIntire et al., 1997). This vesicular GABA transporter (VGAT), the first vesicular amino acid transporter to be molecularly identified, differs in structure from previously cloned vesicular neurotransmitter transporters and defines a novel gene family. Here we use antibodies specific for N- and C-terminal epitopes of VGAT to localize the protein in the rat CNS. VGAT is highly concentrated in the nerve endings of GABAergic neurons in the brain and spinal cord but also in glycinergic nerve endings. In contrast, hippocampal mossy fiber boutons, which although glutamatergic are known to contain GABA, lack VGAT immunoreactivity. Post-embedding immunogold quantification shows that the protein specifically associates with synaptic vesicles. Triple labeling for VGAT, GABA, and glycine in the lateral oliva superior revealed a higher expression of VGAT in nerve endings rich in GABA, with or without glycine, than in others rich in glycine only. Although the great majority of nerve terminals containing GABA or glycine are immunopositive for VGAT, subpopulations of nerve endings rich in GABA or glycine appear to lack the protein. Additional vesicular transporters or alternative modes of release may therefore contribute to the inhibitory neurotransmission mediated by these two amino acids.  相似文献   

5.
Limbic seizures were evoked in freely moving rats by intrahippocampal administration of the muscarinic agonist pilocarpine via the microdialysis probe (10 mM for 40 min at 2 microl/min). This study monitored changes in extracellular hippocampal gamma-aminobutyric acid (GABA), glutamate and dopamine levels after systemic (30 mg/kg/day) or local (intrahippocampal or intranigral, 5 mM or 600 microM for 180 min at 2 microl/min) vigabatrin administration, and evaluated the effectiveness of this antiepileptic drug against pilocarpine-induced seizure activity. Extracellular GABA and glutamate overflow in the ipsilateral cerebellum was studied simultaneously. Microdialysis was used as an in vivo sampling technique and as a drug-delivery tool. Electrophysiological evidence for the presence or absence of seizures was recorded with electrocorticography. The observed alterations in extracellular hippocampal amino acid levels support the hypothesis that muscarinic receptor stimulation by the intrahippocampal administration of 10 mM pilocarpine is responsible for the seizure onset, and that the amino acids maintain the sustained seizure activity. The focally evoked pilocarpine-induced seizures were completely prevented by intraperitoneal vigabatrin premedication for 7 days or by a single intraperitoneal injection. Effective protection was reflected in a lack of sustained elevations of hippocampal glutamate levels. Rats receiving vigabatrin intrahippocampally or intranigrally still developed seizures, although there appeared to be a partial protective effect. During the intrahippocampal perfusion with 5 mM vigabatrin, extracellular hippocampal GABA levels increased, whereas the extracellular glutamate and dopamine overflow decreased. The lack of a complete neuroprotection after local vigabatrin treatment is discussed.  相似文献   

6.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

7.
The role of the GABA transporter in acute toxicity in chick retina due to metabolic inhibition was investigated by the use of several substrate (nipecotic acid, THPO) and nonsubstrate (SKF 89976A, NO711) GABA transport inhibitors. Metabolic stress-induced acute toxicity in the retina is characterized by swelling of distinct populations of retinal neurons and selective release of GABA into the medium. Inhibitor concentrations were based on that needed to attenuate 14C-GABA uptake at its approximate KM concentration by > or = 70%. Under basal conditions, substrate, but not nonsubstrate, inhibitors increased extracellular GABA, but did not cause histological swelling per se. Under conditions of glycolytic inhibition, nonsubstrate, but not substrate, inhibitors significantly attenuated acute toxicity. Metabolic stress-induced acute toxicity was not altered by the GABA agonist muscimol, nor did muscimol reverse the protective effects of nonsubstrate transport inhibitors, suggesting that an increase in extracellular GABA during metabolic stress was not a component of the acute phase of toxicity. The results indicate that during metabolic inhibition, activity at the GABA transporter contributes to acute cellular swelling.  相似文献   

8.
Using native plasma membrane vesicle suspensions from the rat cerebral cortex under conditions designed to alter intravesicular [Ca2+], we found that Ca2+ induced 47 +/- 5% more influx of [3H]GABA, [3H]D-aspartate and [3H]glycine at 37 degrees C with half-times 1.7 +/- 0.5, 1.3 +/- 0.4 and 1.3 +/- 0.4 min, respectively. We labelled GABA transporter sites with the uptake inhibitor, [3H]-(R,S)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid and found that Ca2+ induced a partial dissociation of the bound inhibitor from GABA transporter sites with a similar half-time. By means of rapid kinetic techniques applied to native plasma membrane vesicle suspensions, containing synaptic vesicles stained with the amphipathic fluorescent styryl membrane probe N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyrid inium dibromide, we have measured the progress of the release and reuptake of synaptic vesicles in response to Ca2+ and high-[K+] depolarization in the 0.0004-100 s range of time. Synaptic vesicle exocytosis, strongly influenced by external [Ca2+], appeared with the kinetics accelerated by depolarization. These results are consistent with the potential involvement of Ca2+ in taking low-affinity transporters to the plasma membrane surface via exocytosis.  相似文献   

9.
1. The release of endogenous gamma-aminobutyric acid (GABA) and glutamic acid in the human brain has been investigated in synaptosomal preparations from fresh neocortical samples obtained from patients undergoing neurosurgery to reach deeply located tumours. 2. The basal outflows of GABA and glutamate from superfused synaptosomes were largely increased during depolarization with 15 mM KCl. The K(+)-evoked overflows of both amino acids were almost totally dependent on the presence of Ca(2+) in the superfusion medium. 3. The GABAB receptor agonist (-)-baclofen (1, 3 or 10 microM) inhibited the overflows of GABA and glutamate in a concentration-dependent manner. The inhibition caused by 10 microM of the agonist ranged from 45-50%. 5. The effect of three selective GABAB receptor antagonists on the inhibition of the K(+)-evoked GABA and glutamate overflows elicited by 10 microM (-)-baclofen was investigated. Phaclofen antagonized (by about 50% at 100 microM; almost totally at 300 microM) the effect of (-)-baclofen on GABA overflow but did not modify the inhibition of glutamate release. The effect of (-)-baclofen on the K(+)-evoked GABA overflow was unaffected by 3-amino-propyl (diethoxymethyl)phosphinic acid (CGP 35348; 10 or 100 microM); however, CGP 35348 (10 or 100 microM) antagonized (-)-baclofen (complete blockade at 100 microM) at the heteroreceptors on glutamatergic terminals. Finally, [3-[[(3,4-dichlorophenyl) methyl]amino]propyl] (diethoxymethyl) phosphinic aid (CGP 52432), 1 microM, blocked the GABAB autoreceptor, but was ineffective at the heteroreceptors. The selectivity of CGP 52423 was lost at 30 microM, as the compound, at this concentration, inhibited completely the (-)-baclofen effect on both GABA and glutamate release. 5. It is concluded that GABA and glutamate release evoked by depolarization of human neocortex nerve terminals can be affected differentially through pharmacologically distinct GABAB receptors.  相似文献   

10.
Four subtypes of GABA carriers (GAT1-GAT4) that transport GABA in a sodium-dependent manner were identified so far. In this report, the sodium-dependent release of GABA was investigated in cultured chick retinal cells. Opening of voltage-sensitive sodium channels by veratridine or activation of non-NMDA glutamate receptors induced the release of GABA from cultured cells. The release of GABA was calcium-independent, but could be completely prevented by the substitution of sodium chloride by lithium or choline chloride in the extracellular medium, suggesting that GABA release could be triggered by multiple mechanisms that led to the flux of sodium into these cells. Pharmacological experiments revealed that, while GABA uptake was almost completely inhibited by the GAT-1 blockers NNC-711 (50 microM) or nipecotic acid (1 mM), the release of this amino acid was inhibited by NNC-711, but not by nipecotic acid. The incubation with beta-alanine (10 mM), a GAT-2/GAT-3 inhibitor, blocked 50% of GABA uptake but had no effect on the release. Our data suggest that sodium-dependent GABA release from cultured chick retina cells is mediated by a GAT-1 like transporter that shows some, but not all, the pharmacological properties of the GAT-1 carrier.  相似文献   

11.
The expression of GABA in the human fetal (12-25 weeks of gestation), postnatal (five-month-old), and adult (35-year-old) retinas was investigated by immunohistochemistry. GABA expression was seen as early as 12 weeks in the undifferentiated cells of the inner neuroblast zone; a few optic nerve fiber layer axons were clearly labeled, suggesting that some of the stained cell bodies were prospective ganglion cells, others could be displaced amacrine cells. From 16-17 to 24-25 weeks, intense labeling was found in the amacrine, displaced amacrine, and some ganglion cells. During this time period, horizontal cells (identified by calbindin immunohistochemistry), undergoing migration (periphery) and differentiation (center), expressed GABA prominently. In the postnatal retina, some horizontal cells were moderately labeled, but very weakly in a few cells, in the adult. The Müller cells developed immunoreactivity first weakly at 12 weeks and then moderately from 16-17 weeks onward. The staining was also evident in the postnatal and adult retinas, showing labeled processes of these glial cells. Virtually no axons in the adult optic nerve and nerve fiber layer were stained; the staining was restricted to a few, large ganglion cells and displaced amacrine cells: Some amacrines were also labeled. The possibility that GABA might play a role in horizontal cell differentiation and maturation is highlighted. Other evidences suggest that GABA might play a role in metabolism during retinal development.  相似文献   

12.
The amino acid taurine plays an important trophic role during development and regeneration of the central nervous system. Other amino acid systems, such as those for glutamate and gamma-aminobutyric acid (GABA), are modified during the same physiological and pathological processes. After crushing the optic nerve, goldfish retinal explants were plated in the absence and in the presence of different amino acids and amino acid receptor agonists. The length and the density of the neurites were measured at 5 days in culture. Taurine increased the length and the density of neurites. Glutamate and glycine increased them at low concentration, but were inhibitors at higher concentration. The combination of N-methyl-D-aspartate (NMDA) and glycine produced a greater inhibitory effect than NMDA alone. NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) added simultaneously with taurine impaired the stimulatory effect of the latter. GABA stimulated the emission of neurites in a concentration dependent manner. Hypotaurine also elevated the length of neurites, but cysteinsesulfinic acid did not produce a significant effect. The concentrations of taurine, glutamate and GABA were determined by HPLC with fluorescent detection in the retina of goldfish at various days post-crushing the optic nerve. The levels of taurine were significantly increased at 48h after the crush, and were elevated up to 20 days. Glutamate level decreased after the lesion of the optic nerve and was still low at 20 days. GABA concentration was not significantly different from the control. The interaction of these amino acids during the regenerative period, especially the balance between taurine and glutamate, may be a determinant in restoring vision after the crush.  相似文献   

13.
This study sought to determine the potential role of nitric oxide (NO) in N-methyl-D-aspartate (NMDA)-stimulated efflux of [14C] gamma-aminobutyric acid (GABA) and [3H]acetylcholine from striatal slices in vitro. In Mg2+-free buffer, NMDA-stimulated [14C]GABA and [3H]acetylcholine release were inhibited by the guanylate cyclase inhibitor, 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and, to a lesser extent, by the nitric oxide synthase inhibitor, nitroarginine (N-Arg). Since reversal of catecholamine transporters previously has been implicated in the mechanism underlying NO-induced catecholamine release, we used the GABA transport inhibitor, 1-(2-(((diphenylmethylene)imino)oxy)ethyl)-1,2,5,6-tetrahydro-3-py ridine-carboxylic acid hydrochloride (NNC-711), to address the role of GABA transport in NArg-sensitive NMDA-induced release. NNC-711 inhibited NMDA-stimulated [14C]GABA efflux by 50%, confirming our previous report that NMDA-stimulated GABA release is partially dependent on reversal of the transporter. The effect of N-Arg in the presence of NNC-711 was similar to its effect in the absence of the transport inhibitor, suggesting that reversal of the transporter is not involved in the NO component of NMDA-stimulated [14C]GABA release. These data suggest that glutamatergic transmission through striatal NMDA receptors is partially mediated through activation of the NO/guanylate cyclase pathway and that this mechanism may contribute to the tetrodotoxin sensitivity of NMDA-induced release of GABA and acetylcholine in the striatum.  相似文献   

14.
We have found new evidence for gamma-aminobutyric acid (GABA)-induced intrinsic optical changes associated with a voltage-sensitive dye signal in the early embryonic chick brain stem slice. The slices were prepared from 8-day-old embryos, and they were stained with a voltage-sensitive dye (NK2761). Pressure ejection of GABA to one site within the preparation elicited optical changes. With 580-nm incident light, two components were identified in the GABA-induced optical change. The first component was wavelength dependent, whereas the second, slower change was independent of wavelength. Comparison with the known action spectrum of the dye indicates that the first component reflects a depolarization of the membrane and that the second, slow component is a light-scattering change resulting from cell shrinkage coupled with the depolarization. Similar optical changes also were induced by glycine, although the amplitude of both the first and second signals was much smaller than for GABA. The optical changes induced by GABA persisted in the presence of picrotoxin and 2-hydroxysaclofen, suggesting that these optical responses include a novel GABA response, which has been termed GABAD in our previous reports.  相似文献   

15.
Excitatory amino acid (EAA) neurotransmitters induce postsynaptic depolarization by activating receptor-mediated cation conductances, a process known to underlie changes in synaptic efficacy. Using a patch-clamp method, we demonstrate here an EAA-dependent postsynaptic anion conductance mediated by EAA transporters present on cerebellar Purkinje cell bodies and dendrites in culture. This transporter-mediated current was modulated by neuronal activity: it exhibited facilitation for >20 min after transient depolarization accompanied by Ca2+ influx. Evidence is presented suggesting that the transporter facilitation is mediated by arachidonate release after Ca2+-dependent activation of phospholipase A2, which exists in Purkinje cells. This postsynaptic reuptake system may represent a novel modulatory mechanism of synaptic transmission as well as prevent neuronal excitotoxicity.  相似文献   

16.
We have examined, by light-microscopic immunocytochemistry, the distribution of GABA in the optic nerves of adult rabbits, rats, and cats. Within the optic nerves, immunoreactivity for GABA was restricted to a small subset of axons; some axons were strongly labelled, others weakly labelled, whilst most axons were unlabelled. Glia and other non-neuronal elements were always unlabelled. Our ability to detect GABA in optic nerve axons of adult mammals contrasts with previous reports that indicate a lack of GABA immunoreactivity in such axons. We suggest that this discrepancy may be due to the sensitivity of our immunocytochemical techniques which enable us to detect low concentrations of GABA.  相似文献   

17.
In order to elucidate the mechanisms of release of EAAs and their excitotoxicity in cerebral contusion, cortical contusion was produced in the rat parietal cortex, and the changes in extracellular levels of EAAs in the central and peripheral areas of contusion were investigated using microdialysis. The cortical contusion induced a rapid increase in dialysate concentration of glutamate ([Glu]d) from a baseline level of 4.6+/-2.8 microM to a maximum level of 36.3+/-12.8 microM. This elevation of glutamate was significantly attenuated by mild hypothermia (32 degrees C for 90 min, comprising 20 min before and 70 min after the injury induction) in the peripheral area of contusion (p < 0.01) but not in the central area. Histological evaluations revealed that the hypothermia reduced the necrosis volume of contusion to 38.3% of that in the normothermic control (p < 0.01). In situ administration of Co2+, an inhibitor of Co2+-dependent exocytotic release of EAAs from the nerve terminals, via the microdialysis system, also attenuated the [Glu]d elevation following cortical contusion, in the peripheral area of contusion (p < 0.01) but not in the central area. These findings indicate that cerebral contusion involves heterogeneous and complex mechanisms of EAA release into the extracellular space. The release of EAAs in the contusion core was nonsensitive to hypothermia and Co2+ administration, suggesting that such EAA release was related to primary disruption of the cell membrane or vascular wall by the physical force of the head trauma, resulting in leakage of EAAs from the metabolic pool in the cytosole or blood stream. In contrast, in the peripheral area, the effectiveness of hypothermia and Co2+ administration implied a presynaptic mechanism of EAA release, which consisted, at least in part, of Ca2+-dependent exocytotic EAA release from depolarized nerve terminals. The EAAs released in the contusion core may diffuse towards a peripheral direction and act on the postsynaptic receptors, causing neuronal depolarization. Such a diffusion-reaction process appears to induce additional release of EAAs from the depolarized nerve terminals. Hypothermia may block this diffusion-reaction process and eventually reduce the contusion volume.  相似文献   

18.
In contrast to the mature brain, in which GABA is the major inhibitory neurotransmitter, in the developing brain GABA can be excitatory, leading to depolarization, increased cytoplasmic calcium, and action potentials. We find in developing hypothalamic neurons that glutamate can inhibit the excitatory actions of GABA, as revealed with fura-2 digital imaging and whole-cell recording in cultures and brain slices. Several mechanisms for the inhibitory role of glutamate were identified. Glutamate reduced the amplitude of the cytoplasmic calcium rise evoked by GABA, in part by activation of group II metabotropic glutamate receptors (mGluRs). Presynaptically, activation of the group III mGluRs caused a striking inhibition of GABA release in early stages of synapse formation. Similar inhibitory actions of the group III mGluR agonist L-AP4 on depolarizing GABA activity were found in developing hypothalamic, cortical, and spinal cord neurons in vitro, suggesting this may be a widespread mechanism of inhibition in neurons throughout the developing brain. Antagonists of group III mGluRs increased GABA activity, suggesting an ongoing spontaneous glutamate-mediated inhibition of excitatory GABA actions in developing neurons. Northern blots revealed that many mGluRs were expressed early in brain development, including times of synaptogenesis. Together these data suggest that in developing neurons glutamate can inhibit the excitatory actions of GABA at both presynaptic and postsynaptic sites, and this may be one set of mechanisms whereby the actions of two excitatory transmitters, GABA and glutamate, do not lead to runaway excitation in the developing brain. In addition to its independent excitatory role that has been the subject of much attention, our data suggest that glutamate may also play an inhibitory role in modulating the calcium-elevating actions of GABA that may affect neuronal migration, synapse formation, neurite outgrowth, and growth cone guidance during early brain development.  相似文献   

19.
Using a microdialysis method and a new high performance liquid chromatography (HPLC)-fluorometric method for the detection of gamma-aminobutyric acid (GABA), we investigated the effect of thioperamide, an H3 receptor antagonist, on the GABA content in the dialysate from the anterior hypothalamic area of rats anesthetized with urethane. The addition of thioperamide to the perfusion fluid increased the release of GABA and histamine. Depleting neuronal histamine with alpha-fluoromethylhistidine, a specific inhibitor of histidine decarboxylase, and the administration of immepip, an H3 agonist, had no effect on basal- and thioperamide-induced GABA release. In addition, an infusion of clobenpropit, the most specific H3 receptor antagonist available, did not alter the basal release of GABA. On the other hand, histamine release was decreased by immepip and increased by thioperamide and clobenpropit. Removing Ca2+ from the perfusion fluid did not alter the effect of thioperamide on the GABA release, whereas that on histamine release was abrogated. These results suggest that the effect of thioperamide on GABA release is not mediated by histamine H3 receptors and that thioperamide acts on the transporter to cause an efflux of GABA from neurons and/or glia. Thioperamide is a popular H3 receptor antagonist which has been used applied to many studies. However, results using this compound should be interpreted in consideration of its effects on GABA release.  相似文献   

20.
This study addresses the binding of ions and the permeation of substrates during function of the GABA transporter GAT1. GAT1 was expressed in Xenopus oocytes and studied electrophysiologically as well as with [3H]GABA flux; GAT1 was also expressed in mammalian cells and studied with [3H]GABA and [3H]tiagabine binding. Voltage jumps, Na+ and Cl- concentration jumps, and exposure to high-affinity blockers (NO-05-711 and SKF-100330A) all produce capacitive charge movements. Occlusive interactions among these three types of perturbations show that they all measure the same population of charges. The concentration dependences of the charge movements reveal (1) that two Na+ ions interact with the transporter even in the absence of GABA, and (2) that Cl- facilitates the binding of Na+. Comparison between the charge movements and the transport-associated current shows that this initial Na(+)-transporter interaction limits the overall transport rate when [GABA] is saturating. However, two classes of manipulation--treatment with high-affinity uptake blockers and the W68L mutation-"lock" Na+ onto the transporter by slowing or preventing the subsequent events that release the substrates to the intracellular medium. The Na+ substitutes Li+ and Cs+ do not support charge movements, but they can permeate the transporter in an uncoupled manner. Our results (1) support the hypothesis that efficient removal of synaptic transmitter by the GABA transporter GAT1 depends on the previous binding of Na+ and Cl-, and (2) indicate the important role of the conserved putative transmembrane domain 1 in interactions with the permeant substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号