首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).  相似文献   

2.
Two different kinds of calcium phosphate cement were developed for implant fixation: cement A comprised of alpha-tricalcium phosphate (alpha-TCP) 95% and dicalcium phosphate dihydrate (DCPD) 5%, and cement B comprised of alpha-tricalcium phosphate 90% and dicalcium phosphate dihydrate 10%. The compression strength and pullout force of the new materials were tested both in vitro and in vivo. Microscopic observations were performed on the interface between bone and cement. Cement A showed a greater mechanical strength than cement B. The results suggest the clinical possibility of this calcium phosphate cement, which could be used as a material for enhancing implant fixation.  相似文献   

3.
Tetracalcium phosphate (TTCP) has been shown previously to be an essential component of self-setting calcium phosphate cements that form hydroxyapatite (HA) as the only end-product. We report herein on a new self-setting calcium phosphate cement that does not contain TTCP. These cements consist of dicalcium phosphate anhydrous (DCPA), dicalcium phosphate dihydrate (DCPD), alpha-tricalcium phosphate, or amorphous calcium phosphate and, as an additional source of calcium, calcium hydroxide or calcium carbonate. These cements require the use of a phosphate (0.2 moll(-1) or higher) solution or a high pH solution as the cement liquid. The cements harden in relatively short time (5-30 min) and form HA as the dominant end-product in 24 h. The diametral tensile strengths of the 24-h samples are in the range of 0.2 to 7.5 MPa. Results from X-ray diffraction studies suggest that the cement setting is caused by rapid HA formation induced by the high phosphate concentration of the cement liquid. Because DCPA and DCPD are highly soluble at pH values above 12.7, which is the pK3 of phosphoric acid, high phosphate concentration in the slurry solution was also attainable by using a highly alkaline solution as the cement liquid. The physicochemical properties of these cements are comparable to those of TTCP-containing cements, and the new cements may be expected to have in vivo characteristics similar to those of TTCP-containing cements as well.  相似文献   

4.
The hardening properties of calcium phosphate cements in the CaHPO4-alpha-Ca3(PO4)2 (DCP-alpha-TCP) system have been investigated with interest focused on the compressive strength and microstructure development. Previous studies have shown that the addition of CaCO3(CC) leads to a modification of the calcium-deficient apatite structure of the reaction product, which results in a material more similar to the apatite in bone mineral. The addition of 10% w/w of CC to the initial DCP-alpha-TCP powder mixture resulted, with time, in a retardation of the development of compressive strength. However, the optimum compressive strength reached values up to 40% higher than CC-free samples. This retarding effect also has been monitored as a function of the calcium to phosphorus (Ca/P) ratio of the DCP and alpha-TCP mixture, showing the importance of the final cement properties of the relative quantities of the reactants in the mixture.  相似文献   

5.
Clinical requirements for calcium phosphate bone cements were formulated in terms of the initial setting time, the final setting time, the cohesion time and the ultimate compressive strength. Three cement formulations were tested. The previously developed Biocement H was made of a powder containing alpha-tertiary calcium phosphate and precipitated hydroxyapatite. Biocement B2 powder was made by adding some CaCO3 to Biocement H, whereas Biocement B1 was made by adding some CaCO3 but with simultaneous adjustment of the amount of precipitated hydroxyapatite.The liquid/ powder ratio of the cement paste and the accelerator concentrations (percentage Na2HPO4) in cement liquid were varied. For Biocement H there was no combination of L/P ratio and percentage Na2HPO4 for which all clinical requirements were satisfied. However, there was an area of full compliance for Biocements B1 and B2, of which that for B1 was the largest. Therefore, Biocement B1 may be applied in clinical situations as those in orthopaedics, plastic and reconstructive surgery and oral and maxillofacial surgery, even when early contact with blood is inevitable.  相似文献   

6.
The in vivo setting behaviour of fast-setting calcium phosphate cement (FSCPC) between femoral muscles of the rat was investigated to evaluate the possible value of FSCPC for medical and dental application. Conventional CPC (c-CPC) and FSCPC were implanted between femoral muscles, and various aspects of the setting behaviour such as setting time, mechanical strength and conversion ratio of cement into hydroxyapatite (HAP: Ca10(PO4)6(OH)2) were measured by the Vicat needle method, diametral tensile strength (DTS) measurement, and quantitative powder X-ray diffraction (XRD) analysis, respectively. The setting time of FSCPC in vivo was 5-7 min, in contrast to 48 min for c-CPC. As a result of its fast setting, set specimens of FSCPC showed higher mechanical strength from the initial stage than c-CPC. Higher DTS values were observed in FSCPC than c-CPC implanted after 24 h. Powder XRD analysis revealed faster conversion of FSCPC than c-CPC into HAP, which was responsible both for the faster setting and higher mechanical strength from the initial stage. We concluded, therefore, that FSCPC may be used for a wide range of clinical applications, i.e. fields where fast setting is required such as orthopaedic, plastic and reconstructive, and oral and maxillofacial surgery.  相似文献   

7.
硼泥是硼砂和硼酸生产过程中产生的工业废渣,大量排放不但占用大量的土地,造成地下水污染,失水后飞散成为粉尘,还造成大气污染。将硼泥掺杂到以重烧氧化镁和磷酸二氢钾为原材料制备的磷酸镁水泥中,研究硼泥掺杂对磷酸镁水泥性能的影响。结果表明:硼泥能够延长磷酸镁水泥的缓凝时间,同时能够提高水泥的抗压强度。硼泥的最佳掺量为10%,水泥凝结时间由原来的29 min延长到35 min,水泥抗压强度由56.21 MPa提高到58.7 MPa。XRD分析结果表明,硼泥的加入没有改变磷酸镁水泥的矿相结构。本研究可以为硼泥固废资源化利用提供依据。  相似文献   

8.
The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.  相似文献   

9.
Although there is interest in forming synthetic analogs of hard tissues at physiologic temperature, significant gaps in knowledge exist with respect to the mechanisms by which precursor solids convert to apatites and also with respect to the apatite compositions that may be formed. In this study calcium-deficient HAp [Ca9(HPO4)(PO4)5OH] was prepared by hydrolysis of tricalcium phosphate (TCP), alpha-Ca3(PO4)2. The kinetics of HAp formation were studied as a function of temperature by isothermal calorimetry. TCP hydrolyzed completely within about 12 h, and the hydrolysis reaction evolved 133 kJ/mol of HAp formed. Although the kinetics of hydrolysis exhibited a strong temperature dependence, the mechanistic path taken appeared independent of temperature. The fluoridation of hydroxyapatite compositions having Ca/P ratios higher than 1.59 previously has been investigated. However, little work has been done on the fluoridation of more calcium-deficient hydroxyapatite. Ca9(HPO4)(PO4)5OH was formed at temperatures between 37.4 degrees and 55 degrees C to vary its morphology. These preparations then were reacted in NaF solution and the kinetics of fluoride incorporation studied. Solution chemical analyses were used to determine the amounts of fluoride incorporated. The extent of hydroxyl replacement by fluoride ranged from 17 to 72% and correlated with the surface area of the parent HAp.  相似文献   

10.
A hydraulic calcium phosphate cement made of beta-tricalcium phosphate [beta-Ca3(PO4)2], monocalcium phosphate monohydrate [Ca(H2PO4)2-H2O], and water was used as a delivery system for the antibiotic gentamicin sulfate (GS). GS, added as powder or as aqueous solution, was very beneficial to the physicochemical properties of the cement. The setting time increased from 2 to 4.5 min with 3% (w/w) GS and then slowly decreased to 3.75 min with 16% (w/w) GS. The tensile strength increased from 0.4 to 1.6 MPa with 16% (w/w) GS. These effects were attributed to the presence of sulfate ions in GS. The release of GS from the cement was measured in a pH 7.4 phosphate-buffered saline solution at 37 degrees C by USP paddle method. Factors such as cement porosity, GS content and presence of sulfate ions or polymeric additives were investigated. The amount of GS released was roughly proportional to the square root of time up to approximately 50% release. Afterwards, the release rate markedly slowed down to zero. In all but two cement formulations, the total dose of GS was released within 7 days, indicating that no irreversible binding occurred between the cement paste and the antibiotic. When small amounts of hydroxypropylcellulose or poly(acrylic acid) were added to the cement, the maximum fraction released was a few percent lower than the total GS dose, suggesting some binding between the polymer and GS. The GS release rate was strongly influenced by the presence of sulfate ions in the cement paste and by the cement porosity. The higher the sulfate ion content of the cement paste, the lowe the GS release rate. This influence was attributed to the finer cement micro-structure induced by the presence of sulfate ions. Furthermore, when the initial cement porosity was increased from 38 to 69%, the release rate almost tripled (0.16 to 0.45 h-1/2). Finally, the biological activity of GS in the cement was maintained, as measured by assaying the release medium.  相似文献   

11.
This research compared the compressive strength of two types of all-ceramic crown (Hi-Ceram and Duceram) as affected by selected luting cements (Zn phosphate, glass ionomer and composite resin cement). Thirty crowns of similar size and shape were constructed (15 crowns of each tested material) to fit a standard posterior tooth preparation. Five crowns from each material were cemented by one of the tested cements. The cemented crowns were loaded until catastrophic failure. A two-way analysis of variance was performed and showed that the type of utilized cement had a significant effect on the compressive strength being that Panevia Ex. resin cement the most effective one followed by glass ionomer and then finally zn phosphate cement. Statistical analysis also showed that Hi-Ceram crowns were more resistant to occlusal load than Duceram.  相似文献   

12.
Calcium phosphate cement consisting of alpha-tricalcium phosphate (alpha-TCP), dicalcium phosphate dibasic (DCPD) and tetracalcium phosphate monoxide (TeCP) was implanted into surgically created full-thickness defects in the cranial bone (bone defect experiment) and directly onto the cranial bone under the periosteum (augmentation experiment). Three months after the implantation, the implants were retrieved with the surrounding tissues and studied histologically and micrographically to evaluate if the cement can be used as a cranioplasty and skeletal augmentation material. In the bone defect experiment, successful reconstruction of the defect was seen in 8 out of 12 specimens. Four specimens, where bleeding control was difficult at the time of implantation, showed partial loss of the cement. Histological and microradiographic studies of the successfully implanted cement revealed that new bone surrounded the implant nearly completely and united directly with the cement surface. In the augmentation experiment, the augmented area maintained the hemispherical shape and was connected tightly with the host bone. Histology and microradiography demonstrated that new bone formation was seen in the gap between the cement and the host bone, and on the outer surface (periosteum side) of the cement at the edge of the implant. From this preliminary short-term study, it could be concluded that the cement is a promising material for cranioplasty and skeletal augmentation with indications that it has good osteoconductivity.  相似文献   

13.
Four calcium phosphate cement formulations were implanted in the rabbit distal femoral metaphysis and middiaphysis. Chemical, crystallographic, and histological analyses were made at 2, 4, and 8 weeks after implantation. When implanted into the metaphysis, part of the brushite cement was converted into carbonated apatite by 2 weeks. Some of the brushite cement was removed by mononuclear macrophages prior to its conversion into apatite. Osteoclastlike cell mediated remodeling was predominant at 8 weeks after brushite had converted to apatite. The same histological results were seen for brushite plus calcite aggregate cement, except with calcite aggregates still present at 8 weeks. However, when implanted in the diaphysis, brushite and brushite plus calcite aggregate did not convert to another calcium phosphate phase by 4 weeks. Carbonated apatite cement implanted in the metaphysis did not transform to another calcium phosphate phase. There was no evidence of adverse foreign body reaction. Osteoclastlike cell mediated remodeling was predominant at 8 weeks. The apatite plus calcite aggregate cement implanted in the metaphysis that was not remodeled remained as poorly crystalline apatite. Calcite aggregates were still present at 8 weeks. There was no evidence of foreign body reaction. Osteoclastlike cell remodeling was predominant at 8 weeks. Response to brushite cements prior to conversion to apatite was macrophage dominated, and response to apatite cements was osteoclast dominated. Mineralogy, chemical composition, and osseous implantation site of these calcium phosphates significantly affected their in vivo host response.  相似文献   

14.
STUDY DESIGN: The biomechanical influence of in situ setting hydroxyapatite cement was examined for use in pedicle screw revision surgery. Pull-out testing of control and pedicle screws augmented with hydroxyapatite cement was performed in human cadaver vertebrae. OBJECTIVES: To determine the immediate effect of using hydroxyapatite cement to augment revision pedicle screws after failure of the primary pedicle screw fixation. SUMMARY OF BACKGROUND DATA: The potential problems associated with using polymethylmethacrylate to augment revision pedicular instrumentation have prompted the search for other solutions. The introduction of resorbable hydroxyapatite pastes may have provided new biocompatible solutions for pedicle screw revision. METHODS: Ten human cadaver vertebrae were instrumented with 6.0-mm pedicle screws in each pedicle. The screws were loaded to failure in axial tension (pull-out). The failed pedicles then were instrumented with 7.0-mm pedicle screws, either augmented with hydroxyapatite cement or nonaugmented, which also were loaded to failure. Finally, the nonaugmented 7.0-mm screw hole was reinstrumented with a hydroxyapatite cement-augmented, 7.0-mm pedicle screw and loaded to failure. RESULTS: The pull-out strength of the 7.0-mm, hydroxyapatite cement-augmented screws was 325% (P = 2.9 x 10(-5)) of that of the 6.0-mm control screws, whereas the strength of the 7.0-mm nonaugmented screws was only 73% (P = 2.0 x 10(-2)) of that of the 6.0-mm control screws. The 7.0-mm screws augmented with hydroxyapatite cement also were able to salvage 7.0-mm pull-out sites to 384% (P = 6.9E-5) of the pull-out strength of the 7.0-mm nonaugmented screws. CONCLUSIONS: Hydroxyapatite cement may be a mechanically viable alternative to polymethyl methacrylate for augmenting revision pedicular instrumentation and should be considered for future experimental, animal, and clinical testing.  相似文献   

15.
Biphasic calcium phosphate, consisting of beta-tricalcium phosphate and hydroxyapatite, was implanted in wide and deep periodontal osseous defects of monkeys in combination with the guided tissue regeneration technique. After 12 weeks, sites treated with a combination of biphasic calcium phosphate and guided tissue regeneration maintained the shape of the ridge, but both guided tissue regeneration and control sites (untreated) showed extreme resorption. A histopathologic investigation revealed that numerous macrophages contained small particles of ceramic within their vesicles and the active bone replacement occurred from the surrounding bone. Biphasic calcium phosphate has osteoconductive potential and this potential may be related to degradation by macrophage phagocytosis.  相似文献   

16.
The effect of the mixing solution volume was investigated on the in vitro drug-release rate of a novel drug-delivery device based on a self-setting bioactive calcium phosphate cement containing aspirin as a model drug. Equimolar mixtures of metastable calcium phosphate powders containing various proportions (3-40 w/w %) of seed hydroxyapatite crystals transformed into hydroxyapatite after being mixed with dilute phosphoric acid. The drug release from cement pellets in vitro into a 0.1 mol/L phosphate buffer at pH 7.40 and 37 degrees C by the rotating disk method continued for more than 1 week. The drug-release rate from the cement increased with increasing volumes of mixing solution. The relationship between the liquid/powder ratio and the porosity of the cement was a straight line, indicating that the cement porosity depended on the amount of the mixing solution, but was independent of the amount of seed crystals. Drug release from the cement followed the modified Fick's law, with the rate increasing with the amount of mixing solution, since the porosity depended on the amount. The tortuosity of the cements was estimated from the modified Fick's equation, and the relationships between the drug release rate and the tortuosity of the pore in the drug-loaded cement in the plots were nonlinear. The results suggested that the drug-release rates from the cement were controlled by the drug diffusion in the pores.  相似文献   

17.
为解决多孔透气材料力学强度与透气性能两者之间的矛盾, 以纯铝酸钙水泥为钙源, 在刚玉质多孔材料中原位生成六铝酸钙相, 研究了六铝酸钙生成量对多孔材料显微结构、物相组成及物理性能的影响。结果表明: 在1700℃保温3 h处理后, 添加纯铝酸钙水泥的试样中均有板状片六铝酸钙生成。当纯铝酸钙水泥添加量(质量分数)不超过3%时, 六铝酸钙的原位生成不仅提高了多孔材料的常温耐压强度和高温抗折强度(1400℃保温0.5 h), 还能改善材料的透气性能; 继续增加纯铝酸钙水泥的加入量, 多孔材料的上述性能降低。当纯铝酸钙水泥添加量(质量分数)为3%时, 试样常温耐压强度为33.6 MPa, 高温抗折强度为6.2 MPa, 达西渗流系数及非达西渗流系数分别为2.54×10-10 m2和1.46×10-6 m。  相似文献   

18.
Hydroxyapatite thermal decomposition product (HATDP) after mixing with water was injected into the femur of rabbits, and its biocompatibility, compressive strength and bone-bonding strength were investigated. The compressive strength of a block of HATDP was 56.0 MPa 4 weeks after injection, which was about 60% of that of poly(methyl methacrylate) (PMMA) cement. The bone-bonding strength was 8.2 MPa 4 weeks after injection, which was significantly higher than that of PMMA cement. HATDP seems to be useful as a cement material because of its good bone-bonding property and relatively high mechanical strength.  相似文献   

19.
The dissolution-precipitation process for calcium-phosphate ceramics in contact with biological fluid was studied by incubating blocks of biphasic calcium phosphate composed of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP) in different solutions: ionic simulated body fluid (SBF) without protein or SBF that contained various proteins and macromolecules separately (fibronectin, vitronectin, albumin, and poly-L-glutamic acid). Transmission electron microscopy studies revealed that apatite-precipitated microcrystals appeared around ceramic crystals as a result of secondary nucleation; microcrystals were in continuity with the lattice planes of the HA crystals but in a different direction from that of beta-TCP; the size of the precipitates was smaller when fibronectin, vitronectin, and poly-(L-glutamic acid) were present in SBF as compared to SBF without protein; and fibronectin and vitronectin initiated crystal nucleation in the void spaces between the ceramic crystals.  相似文献   

20.
Pulsed laser deposited calcium phosphate coatings on titanium alloy have been tested under simulated physiological conditions in order to evaluate the changes in morphology, composition and structure. The coatings were deposited under different conditions to obtain different crystalline structures, ranging from amorphous and mixed crystalline phases to pure crystalline hydroxyapatite (HA). The coated samples were immersed in a Ca-free Hank's balanced salt solution for up to 5 days. Characterization of the coatings was performed by X-ray diffraction, scanning electron microscopy and Fourier-transform Raman spectroscopy before and after immersion. Their dissolution behaviour was also monitored through their mass loss and calcium release. Coatings of pure HA preserve their morphology and structure during the exposure time in solution. In multiphasic coatings, consisting of HA with tetracalcium phosphate (TetraCP) or beta-tricalcium phosphate (beta-TCP) with a-tricalcium phosphate (alpha-TCP), microporosity is induced by the complete dissolution of TetraCP or gamma-TCP. Amorphous calcium phosphate coatings totally dissolve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号