首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了提高含粗骨料超高性能混凝土(Ultra-high performance concrete,UHPC)的单轴拉伸性能,采用单轴拉伸试验和图像分析技术分别研究了粗骨料掺量、颗粒粒径对含粗骨料UHPC单轴拉伸性能和钢纤维在UHPC体系中分散性能的影响规律。结果表明,随着粗骨料掺量及颗粒粒径的增大,钢纤维在UHPC体系中的分散系数和取向系数显著降低,含粗骨料UHPC的单轴拉伸初裂强度、裂后强度和耗能也随之减小。根据粗骨料颗粒最大粒径与钢纤维体积分数、直径间的匹配关系式(Dmax=3df/(Vf)0.5),采用纤维混杂可以充分发挥多尺度纤维与具有不同粒径分布的骨料间的分级匹配关系;粗骨料体积分数和颗粒最大粒径分别为10%和10mm时,采用平直钢纤维(直径0.12mm、长度10mm、体积掺量1.2%)和端钩钢纤维(直径0.35 mm、长度20mm、体积掺量1.8%)混杂实现了含粗骨料UHPC的单轴拉伸性能的提升,其裂后强度和耗能分别为8.69 MPa和11.10J。  相似文献   

2.
Creep of UHPC in tension and compression: Effect of thermal treatment   总被引:1,自引:0,他引:1  
Steel fiber-reinforced ultra-high performance concrete (UHPC) is of increasing interest for use in precast prestressed concrete highway bridge girders due to its superior durability and the potential for reducing or eliminating shear reinforcement, due to the presence of steel fibers. However, the contributions of creep, and especially tensile creep, to long-term performance must be better understood to develop appropriate design specifications. Due to practical considerations, it is also of interest to investigate the influence of varying thermal treatment, including temperatures lower than those recommended by the manufacturer (i.e. 90 °C), on the creep of UHPC. In this 1-year study, the effects of three different thermal treatment regimes on tensile and compressive creep performance of UHPC are examined, with complementary characterization by nanoindentation and scanning electron microscopy. Results show that UHPC creeps phenomenologically differently in tension and compression. Both thermal treatments examined resulted in similar tensile creep behavior, suggesting that a lower temperature applied over a longer period could effectively cure UHPC. For the non-thermally cured UHPC, a 10 μm wide region observed at the fiber/matrix interface was characterized by reductions in elastic modulus as well as greater porosity and microcracking than the bulk paste. It is suggested that the quality of the fiber/matrix interface is a major contributor to the measured increased creep of non-thermally treated UHPC as compared to UHPC treated at 60 °C or 90 °C.  相似文献   

3.
This experimental research investigates the mechanical properties and shrinkage of ultra high performance concrete (UHPC) incorporating coarser fine aggregates with maximum particle size of 5 mm. To adequately design UHPC mixtures using various sizes of solid constituents, particle packing theory was adopted. UHPC mixtures containing either dolomite or basalt, and four fiber volume fractions up to two volume percent were investigated. Uniaxial tension test was performed to evaluate the first cracking tensile strength, ultimate tensile strength, tensile strain capacity and cracking pattern. The UHPC mixtures with dolomite and steel fibers with more than one volume percent achieved more than 150 MPa of compressive strength at the age of 56 days, and showed strain hardening behavior and limited decrease in tensile strength compared to typical UHPC without coarser fine aggregates. The experimental results highlight the potential of dolomite used as coarser fine aggregate in UHPC.  相似文献   

4.
采用来自于废旧轮胎的两种再生钢纤维制备含粗骨料的超高性能混凝土,并测定其抗压强度、劈裂抗拉强度、断裂能和静弹性模量等力学性能,空白组及普通钢纤维增韧超高性能混凝土作对比性能试验。结果显示,未附着橡胶颗粒的再生钢纤维使超高性能混凝土的抗压强度略微下降,降低幅度为3.91%,其余各类型钢纤维均有利于提高超高性能混凝土的力学性能;而附着橡胶颗粒的再生钢纤维显著提高了超高性能混凝土的断裂能,约为普通钢纤维增韧超高性能混凝土的4倍。此外,再生钢纤维对超高性能混凝土的劈裂抗拉强度和静弹性模量的提高效果均优于普通钢纤维。再生钢纤维,尤其是附着橡胶颗粒的再生钢纤维,可以作为一种增韧材料替代普通钢纤维应用到超高性能混凝土工程结构中。   相似文献   

5.
Ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHP-FRC) were introduced in the mid 1990s. Special treatment, such as heat curing, pressure and/or extensive vibration, is often required in order to achieve compressive strengths in excess of 150 MPa (22 ksi). This study focuses on the development of UHP-FRCs without any special treatment and utilizing materials that are commercially available on the US market. Enhanced performance was accomplished by optimizing the packing density of the cementitious matrix, using very high strength steel fibers, tailoring the geometry of the fibers and optimizing the matrix-fiber interface properties. It is shown that addition of 1.5% deformed fibers by volume results in a direct tensile strength of 13 MPa, which is 60% higher than comparable UHP-FRC with smooth steel fibers, and a tensile strain at peak stress of 0.6%, which is about three times that for UHP-FRC with smooth fibers. Compressive strength up to 292 MPa (42 ksi), tensile strength up to 37 MPa (5.4 ksi) and strain at peak stress up to 1.1% were also attained 28 days after casting by using up to 8% volume fraction of high strength steel fibers and infiltrating them with the UHPC matrix.  相似文献   

6.
研究了在(20±2)℃、相对湿度为(50±5)%的环境中钢纤维体积掺量为0%、1%、2%和3%的超高性能混凝土(UHPC)的干燥收缩。结果表明:UHPC在前7d的干燥收缩发展速率较快,7d后发展速率逐渐减缓;但当钢纤维掺量超过2%后,钢纤维对干燥收缩的改善作用明显降低,相比钢纤维掺量为2%的UHPC,3%掺量UHPC的干燥收缩仅仅降低了1.5%。钢纤维高弹模及它与基体的界面粘结有效降低了混凝土的干燥收缩,但钢纤维掺量过多可导致多孔薄弱的界面区增加,从而使其对混凝土的收缩抑制作用减小。粉煤灰对超高性能混凝土干燥收缩的抑制作用大于矿粉。提出的新的数学拟合指数公式相比于文献中常用的ACI和王铁梦公式与实测结果吻合度更好。  相似文献   

7.
Strain-hardening UHP-FRC with low fiber contents   总被引:4,自引:1,他引:3  
This research work focuses on the optimization of strength and ductility of ultra high performance fiber reinforced concretes (UHP-FRC) under direct tensile loading. An ultra high performance concrete (UHPC) with a compressive strength of 200 MPa (29 ksi) providing high bond strength between fiber and matrix was developed. In addition to the high strength smooth steel fibers, currently used for typical UHP-FRC, high strength deformed steel fibers were used in this study to enhance the mechanical bond and ductility. The study first shows that, with appropriate high strength steel fibers, a fiber volume fraction of 1% is sufficient to trigger strain hardening behavior accompanied by multiple cracking, a characteristic essential to achieve high ductility. By improving both the matrix and fiber parameters, an UHP-FRC with only 1.5% deformed steel fibers by volume resulted in an average tensile strength of 13 MPa (1.9 ksi) and a maximum post-cracking strain of 0.6%.  相似文献   

8.
以约束水平、环境条件(密闭或干燥)和钢纤维等为参数,开展了超高性能混凝土(UHPC)圆环约束收缩试验。研究了钢环应变随龄期的发展规律;分析了各参数对圆环约束下的残余应力与各关键龄期的力学性能的影响;采用了拉应力水平和应力松弛率来评价UHPC的开裂性能。为配合圆环收缩试验,开展了自由收缩与基本力学性能试验。试验表明,未掺钢纤维的UHPC早期开裂风险大,在14 d前均发生开裂,裂缝平均宽度大于0.25 mm,含钢纤维试件均未开裂。不同约束程度对拉应力水平与应力松弛率的影响均显著,降低约束程度能有效降低开裂风险。与自由收缩测试结果不同,圆环约束UHPC在密闭条件下后期的开裂风险会高于环向干燥条件。建议以密闭条件下14 d的抗裂性能作为控制指标评价圆环约束下UHPC的开裂性能。  相似文献   

9.
采用自制的单根钢纤维拉拔试验装置等,通过拉拔试验和SEM-EDS等试验,开展钢纤维的磷酸锌(ZnPh)改性及其形状对在蒸压养护条件下的掺花岗岩石粉超高性能混凝土(UHPC)增强增韧影响机理的研究。所研究钢纤维形状包括:镀铜平直型S、镀铜单折线端钩型G1、镀铜双折线端钩型G2和镀铜波浪型L。研究表明,钢纤维的机械咬合力起主导作用,钢纤维平均粘结强度与拔出功大小顺序均为:G1G2LS。ZnPh改性后,钢纤维表面变粗糙,这增强了钢纤维与UHPC基体间的化学粘结力和静摩擦力,从而提高了钢纤维在UHPC中的平均粘结强度和拔出功。在UHPC韧性的提高方面,采用ZnPh改性,对S钢纤维最明显,而对异型钢纤维(G1、G2和L)则不明显。  相似文献   

10.
Review: Improving cement-based materials by using silica fume   总被引:2,自引:0,他引:2  
The effects of silica fume as an admixture in cement-based materials are reviewed in terms of the mechanical properties, vibration damping capacity, freeze-thaw durability, abrasion resistance, shrinkage, air void content, density, permeability, steel rebar corrosion resistance, alkali-silica reactivity reduction, chemical attack resistance, bond strength to steel rebar, creep rate, coefficient of thermal expansion, specific heat, thermal conductivity, fiber dispersion, defect dynamics, dielectric constant and workability. The effects of silane treatment of the silica fume and of the use of silane as an additional admixture are also addressed.  相似文献   

11.
选用4种壳类纤维-椰子壳、榛子壳、核桃壳和稻壳为填充材料,聚氯乙烯(PVC)为基体材料,制备壳类纤维/PVC复合材料,对4种壳类纤维进行了FTIR和热分析,对4种壳类纤维/PVC复合材料进行蠕变及磨损性能测试。结果表明:4种壳类材料中,稻壳纤维中纤维素含量最高,为43.6%,稻壳纤维/PVC复合材料具有较好的结合界面和力学性能,其压缩、拉伸和弯曲强度最高,分别为43.1 MPa、23.2 MPa和46.1 MPa,比强度最低的核桃壳纤维/PVC复合材料分别高出13.7%、33.3%和21.0%,在相同应力作用下,稻壳纤维/PVC复合材料蠕变应变值最小;在相同磨损条件下,稻壳纤维/PVC复合材料的比磨损率最小,其摩擦系数亦为最小。  相似文献   

12.
The mechanical properties of a fiber-reinforced concrete are closely related to the properties of the matrix, fiber, and fiber-matrix interface. The fiber-matrix bond property is mainly governed by the adhesion between the fiber and surrounding cement materials, as well as the strength of materials at the interfacial transition zone. In this paper, the effect of nano-CaCO3 content, varying between 0 and 6.4%, by mass of cementitious materials, on microstructure development, fiber-matrix interfacial bond properties, and mechanical properties of ultra-high performance concrete (UHPC) reinforced with 2% steel fibers were investigated. The bond properties, including bond strength and pullout energy, were evaluated. Mercury intrusion porosimetry (MIP), backscattered electron microscopy (BSEM), optical microscopy, and micro-hardness testing were used to characterize the microstructure of matrix and/or interfacial transition zone (ITZ) around an embedded steel fiber. Test results indicated that the incorporation of 3.2% nano-CaCO3 significantly improved the fiber-matrix bond properties and the flexural properties of UHPC. This was attributed to densification and strength enhancement of ITZ as observed from micro-structural analyses. Beyond the nano-CaCO3 content of 3.2%, the fiber bond and mechanical properties of UHPC decreased due to increased porosity associated with agglomeration of the nano-CaCO3.  相似文献   

13.
In the framework of this study, various mixtures of fiber reinforced and non-reinforced ultra high performance concrete (UHPFRC and UHPC) were produced and tested with focus on the determination of the fracture energy and its comparison to standard mechanical material parameters. For some mixtures a compressive strength of more than 300 MPa was reached still retaining good fresh characteristics of the UHPC. These mixtures were examined for properties of fresh and hardened concrete, focusing on tensile strength properties and fracture energy. The fracture energy was determined to describe the work capacity, i.e. the potential energy intake until the failure of the material. Thereby, a significant increase of the work capacity could be achieved by the addition of steel fibers. Furthermore, the impact of a vacuum treatment of the freshly mixed concrete in regard to fresh and hardened concrete characteristics as well as the influence of aftertreatment (heat treatment and water storage) on compressive and tensile properties of the UHPC was investigated.  相似文献   

14.
This study investigated the synergistic tensile response of blending 1% long and 0.5% short steel fibers in ultra-high-performance concrete (UHPC) at high strain rates of 16–37 s−1. Three ultra-high-performance hybrid-fiber-reinforced concretes (UHP-HFRCs) containing twisted, hooked, or smooth long (30 mm) fibers blended with short (13 mm) smooth fibers, as well as one sample (LS10MS05) blending long and medium (19 mm) smooth fibers, were examined. The blending of long and shorter steel fibers in UHPC generated high synergy in the tensile responses of the UHP-HFRCs, especially at high strain rates. Synergies were significant for strain capacity and peak toughness, but not for post-cracking strength and softening fracture energy. Among the long fibers, the hooked fibers generated the highest synergy at high strain rates, but smooth fibers produced the highest rate sensitivity in UHPC. Consequently, the LS10MS05 sample demonstrated the highest tensile resistance at high strain rates.  相似文献   

15.
钢纤维对超高性能混凝土抗弯力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究长、短钢纤维对超高性能混凝土(UHPC)受弯力学性能的影响,设计并制作了13组标准养护条件下的UHPC试件,其中3组为掺单一型短钢纤维,其他组均为掺混杂型钢纤维,对其进行立方体抗压及四点抗折试验。结果表明:对于掺加单一型短钢纤维的钢纤维/UHPC,钢纤维体积掺量为5vol%时,抗折强度最大,为19.98 MPa,继续增加钢纤维掺量,抗折强度反而降低;掺混杂型钢纤维的UHPC比单一型的抗折强度高,并且当长、短钢纤维体积掺量分别为2vol%和1vol%时,抗折强度达到最大,为23.55 MPa;钢纤维/UHPC的抗弯力学性能主要受长纤维的影响,短纤维影响较小;长纤维掺量对钢纤维/UHPC的抗折强度、延性以及抗弯韧性有一定影响,但是主要取决于长、短纤维的搭配,长、短纤维体积掺量最优搭配为2vol%和1vol%。  相似文献   

16.
为研究高强型钢超高性能混凝土梁的受弯性能,以配钢率、型钢位置和钢纤维体积分数为变化参数,设计了6个试件,并对其进行了静力加载试验,获得了试件的破坏形态和荷载-跨中挠度曲线,分析了试件的承载能力和变形能力,以及型钢、纵向钢筋和超高性能混凝土的应变变化规律。基于试验研究,建立了高强型钢超高性能混凝土梁受弯性能的有限元分析模型,计算结果与试验结果吻合较好,进而进行了参数分析。结果表明:所有试件均发生的是适筋破坏,纵向受拉钢筋和型钢下翼缘率先屈服,然后受压区超高性能混凝土被压碎;在试件的破坏阶段,所承担的荷载会依次经历陡降、波动、缓慢上升和缓慢下降四个阶段;试件的变形能力系数超过5,呈现出较强的变形能力;试件开裂前,超高性能混凝土的应变符合平截面假定,但开裂后,只有受压区和受拉区在中和轴附近的一小部分超高性能混凝土应变呈线性分布;配钢率和型钢强度增大,试件的承载能力和变形能力均提高;超高性能混凝土抗压强度增大及型钢从截面居中位置下移,试件的承载能力提高,但变形能力下降;钢纤维体积分数增加,试件的抗裂能力和变形能力均提高,但承载能力变化不显著。  相似文献   

17.
杜咏  严芙蓉 《工程力学》2021,38(8):66-74
采用非接触式应变视频测量系统,对常用于实际工程的1670级平行钢丝束进行了15个温度水平下的温度膨胀试验以及多应力水平下的高温蠕变试验,并对历经2 h高温蠕变试验后冷却至室温的平行钢丝束试件进行了抗拉强度测试,获取了平行钢丝束热膨胀应变历程及高温蠕变应变历程曲线。试验结果表明:平行钢丝束热膨胀应变随着温度升高呈非线性增长,且在750 ℃附近材料微结构发生相变;温度和应力水平对高温蠕变历程均会产生显著影响;蠕变试验温度愈高,应力水平对历经高温后平行钢丝束的剩余抗拉强度的影响愈显著;与1860级预应力钢绞线相比,1670级平行钢丝束具有较小的高温蠕变应变。基于试验数据,建议了平行钢丝束热膨胀系数关于温度的函数式及高温蠕变模型。该文所建议的平行钢丝束热膨胀系数及高温蠕变模型有利于预应力钢结构火灾高温下的力学响应分析。  相似文献   

18.
The interfacial bond strength of long high-strength steel fibers embedded in ultra-high-performance concrete (UHPC) reinforced with short steel microfibers was investigated by conducting single-fiber pullout tests. In particular, the influence of the addition of a shrinkage-reducing to a UHPC matrix on the pullout resistance of high-strength steel fibers was investigated. The addition of a shrinkage-reducing agent produced a noticeable reduction in the fiber pullout resistance owing to the lower matrix shrinkage, although the reduction of pullout resistance differed according to the type of fiber. Long smooth and twisted steel fibers were highly sensitive to the addition of the shrinkage-reducing agent whereas hooked fibers were not. Among the various high-strength steel fibers tested, twisted steel macrofibers showed the highest interfacial bond resistance, although twisted fibers embedded in UHPC showed slip softening pullout behavior rather than the typical slip hardening behavior observed in mortar.  相似文献   

19.
混杂纤维增强超高性能混凝土弯曲韧性与评价方法   总被引:3,自引:0,他引:3       下载免费PDF全文
邓宗才 《复合材料学报》2016,33(6):1274-1280
为了研究混掺纤维对超高性能混凝土(UHPC)的增韧效果, 通过161个三点弯曲梁的断裂试验, 测定了4种纤维和不同掺量下各UHPC试件的载荷-裂口张开位移(CMOD)曲线和载荷-挠度曲线。将素UHPC峰值载荷对应的CMOD视为混杂纤维增强UHPC的初裂CMOD值, 基于载荷-CMOD曲线提出了等效断裂韧度的韧性评价方法, 该方法具有明确的物理含义, 可用于分析混掺纤维品种和掺量对UHPC断裂韧性的影响规律。研究发现:在小变形(小于50倍素UHPC峰值载荷对应的CMOD值)时, UHPC韧性取决于钢纤维的掺率;粗合成纤维主要在中等变形和大变形阶段(大于50倍素UHPC峰值载荷对应的CMOD值)发挥其增韧效用。   相似文献   

20.
A new type of low-strength concrete made with steel slag and gravel was investigated in this report. Increasing the amount of cement or steel slag in the mix increased the maximum dry density and optimum moisture content of the concrete. Additionally, the compressive and indirect tensile strength of the concrete increased with curing age. The strength of mixes with low cement contents increased with the slag content, while that of mixes with higher cement contents decreased with slag content. Finally, the average indirect tensile strength for all mixes as a percentage of compressive strength was ∼14%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号