首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Renewable Energy》2007,32(4):547-566
In this paper, two single-acting, twin power piston and four power pistons, gamma-configuration, low-temperature differential Stirling engine are designed and constructed. The engine performance is tested with air at atmospheric pressure by using a gas burner as a heat source. The engine is tested with various heat inputs. Variations of engine torque, shaft power and brake thermal efficiency at various heat inputs with engine speed and engine performance are presented. The Beale number obtained from testing of the engines is also investigated. The results indicate that, for twin power piston engine, at a maximum actual heat input of 2355 J/s with a heater temperature of 589 K, the engine produces a maximum torque of 1.222 N m at 67.7 rpm, a maximum shaft power of 11.8 W at 133 rpm, and a maximum brake thermal efficiency of 0.494% at 133 rpm, approximately. For the four power pistons engine, the results indicate that at the maximum actual heat input of 4041 J/s with the heater temperature of 771 K, the engine produces a maximum torque of 10.55 N m at 28.5 rpm, a maximum shaft power of 32.7 W at 42.1 rpm, and a maximum brake thermal efficiency of 0.809% at 42.1 rpm, approximately.  相似文献   

2.
This research purpose was to perform a parametric study of a novel thermal water pump well fitted in a simulated solar water heating system (SWHS). The SWHS was composed of a heating tank (HT), a hot water storage tank (ST) and an overhead tank (OT). The HT together with a specially designed valve act as a novel thermal water pump that gets power from hot water vapor and air pressure produced by a built-in electric heater in order to transfer heat from the HT to ST. The general operation of this pump has four stages for each cycle: heating, water circulating, vapor circulating and water supplying. The discharge water heads were varied with an increment of 0.25 m from 0.75 to 3 m. According to the experiment, it was found that the pump could operate at an average HT temperature of about 80–95 °C leading to 70–80 °C ST temperatures and 20–35 pumping cycles and consumed 17 MJ energy input during 9-h period. The overall thermal efficiency of the SWHS was 33–42% and the mean pump efficiency was about 0.005–0.011% depending upon the discharge heads.  相似文献   

3.
In this paper, an exergoeconomic analysis has been carried out and on the basis of this analysis it has been concluded that in terms of energy saving the glazed hybrid photovoltaic thermal (PVT) module air collector offers a greater potential compared to PV module. The experimental validation for glazed hybrid PVT module air collector has also been performed and it has been observed that there is a good agreement between the theoretical and experimental values with correlation coefficient in range of 0.96–0.99 and root mean square percentage deviation in range of 2.38–7.46. The experiments have been carried out on clear days during the month July 2010 to June 2011. For the validation of theoretical results with experimental results, a typical day of winter month (December 08, 2010) and summer month (April 11, 2011) has been considered. An experimental uncertainty for December and April month is 11.6% and 2.1% respectively. The annual overall thermal energy and exergy gain are 1252.0 kWh and 289.5 kW h respectively. The annual net electrical energy savings by glazed hybrid PVT module air collector is 234.7 kW h.  相似文献   

4.
Concentrating solar thermal systems offer a promising method for large scale solar energy collection. Although concentrating collectors are generally thought of as large-scale stand-alone systems, there is a huge opportunity to use novel concentrating solar thermal systems for rooftop applications such as domestic hot water, industrial process heat and solar air conditioning for commercial, industrial and institutional buildings. This paper describes the thermal performance of a new low-cost solar thermal micro-concentrating collector (MCT), which uses linear Fresnel reflectors, and is designed to operate at temperatures up to 220 °C. The modules of this collector system are approximately 3 m long by 1 m wide and 0.3 m high. The objective of the study is to optimise the design to maximise the overall thermal efficiency. The absorber is contained in a sealed enclosure to minimise convective losses. The main heat losses are due to natural convection inside the enclosure and radiation heat transfer from the absorber tube. In this paper we present the results of a computational and experimental investigation of radiation and convection heat transfer in order to understand the heat loss mechanisms. A computational model for the prototype collector has been developed using ANSYS–CFX, a commercial computational fluid dynamics software package. The numerical results are compared to experimental measurements of the heat loss from the absorber, and flow visualisation within the cavity. This paper also presents new correlations for the Nusselt number as a function of Rayleigh number.  相似文献   

5.
Increasing environmental pollutions is an important problem appearing at cold start of internal combustion engines. Developments of new devices that solve this problem are an extremely urgent need especially for cold regions. In this study, a developed experimental sample of thermal energy storage system (TESS) for pre-heating of internal combustion engines has been designed and tested. The development thermal energy storage device (TESD) works on the effect of absorption and rejection of heat during the solid–liquid phase change of heat storage material (Na2SO4 · 10H2O). The TESS has been applied to a gasoline engine at 2 °C temperature and 1 atm pressure. Charging and discharging time of the TESD are about 500 and 600 s, respectively and temperature of engine is increased 17.4 °C averagely with pre-heating. Maximum thermal efficiency of the TESS system is 57.5 % after 12 h waiting duration. CO and HC emissions decrease about 64% and 15%, respectively, with effect of pre-heating engine at cold start and warming-up period.  相似文献   

6.
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 °C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio, typically in the range ? = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.  相似文献   

7.
A thermal energy storage system, consisting of a packed bed of rocks as storing material and air as high-temperature heat transfer fluid, is analyzed for concentrated solar power (CSP) applications. A 6.5 MWhth pilot-scale thermal storage unit immersed in the ground and of truncated conical shape is fabricated and experimentally demonstrated to generate thermoclines. A dynamic numerical heat transfer model is formulated for separate fluid and solid phases and variable thermo-physical properties in the range of 20–650 °C, and validated with experimental results. The validated model is further applied to design and simulate an array of two industrial-scale thermal storage units, each of 7.2 GWhth capacity, for a 26 MWel round-the-clock concentrated solar power plant during multiple 8 h-charging/16 h-discharging cycles, yielding 95% overall thermal efficiency.  相似文献   

8.
The present work developed a prototype Stirling engine working at the moderate temperature range. This study attempts to demonstrate the potential of the moderate temperature Stirling engine as an option for the prime movers for Concentrating Solar Power (CSP) technology. The heat source temperature is set to 350–500 °C to resemble the temperature available from the parabolic trough solar collector. This moderate temperature difference allows the use of low cost materials and simplified mechanical designs. With the consideration of local technological know how and manufacturing infrastructure, this development works with a low charged pressure of 7 bar and uses air as a working fluid. The Beta-type Stirling engine is designed and manufactured for the swept volume of 165 cc and the power output of 100 W. The performance of engine is evaluated at different values of charge pressures and wall temperatures at the heater section. At 500 °C and 7 bar, the engine produces the maximum power of 95.4 W at 360 rpm. The thermal efficiency is 9.35% at this maximum power condition. Results show that the moderate temperature operation offers a clear advantage in terms of the specific power over the low temperature operation. In terms of the West number, the present work demonstrated that the moderate temperature difference operations could offer the performance on par with the high temperature operations with more simple and less costly development.  相似文献   

9.
Thermal energy storage systems which keep warm and cold water separated by means of gravitational stratification have been found to be attractive in low and medium temperature thermal storage applications due to their simplicity and low cost. This effect is known as thermal stratification, and has been studied experimentally thoughtfully. This system stores sensible heat in water for short term applications. Adding PCM (phase change material) modules at the top of the water tank would give the system a higher storage density and compensate heat loss in the top layer because of the latent heat of PCM. Tests were performed under real operating conditions in a complete solar heating system that was constructed at the University of Lleida, Spain. In this work, new PCM-graphite compounds with optimized thermal properties were used, such as 80:20 weight percent ratio mixtures of paraffin and stearic acid (PS), paraffin and palmitic acid (PP), and stearic acid and myristic acid (SM). The solar domestic hot water (SDHW) tank used in the experiments had a 150 L water capacity. Three modules with a cylindrical geometry with an outer diameter of 0.176 m and a height of 0.315 m were used. In the cooling experiments, the average tank water temperature dropped below the PCM melting temperature range in about 6–12 h. During reheating experiments, the PCM could increase the temperature of 14–36 L of water at the upper part of the SDHW tank by 3–4 °C. This effect took place in 10–15 min. It can be concluded that PS gave the best results for thermal performance enhancement of the SDHW tank (74% efficiency).  相似文献   

10.
Selection of an appropriate HTF is important for minimising the cost of the solar receiver, thermal storage and heat exchangers, and for achieving high receiver and cycle efficiencies. Current molten salt HTFs have high melting points (142–240 °C) and degrade above 600 °C. Sodium’s low melting point (97.7 °C) and high boiling point (873 °C) allow for a much larger range of operational temperatures. Most importantly, the high temperatures of sodium allow the use of advanced cycles (e.g. combined Brayton/Rankine cycles). In this study, a comparison between the thermophysical properties of two heat transfer fluids (HTFs), Hitec (a ternary molten salt 53% KNO3 + 40% NaNO2 + 7% NaNO3) and liquid sodium (Na), has been carried out to determine their suitability for use in high-temperature concentrated solar thermal central-receiver systems for power generation. To do this, a simple receiver model was developed to determine the influences of the fluids’ characteristics on receiver design and efficiency. While liquid sodium shows potential for solar thermal power systems due to its wide range of operation temperatures, it also has two other important differences – a high heat transfer coefficient (~an order of magnitude greater than Hitec) and a low heat capacity (30–50% lower than Hitec salt). These issues are studied in depth in this model. Overall, we found that liquid sodium is potentially a very attractive alternative to molten salts in next generation solar thermal power generation if its limitations can be overcome.  相似文献   

11.
A Solar Wall Heating (SWH) system was developed to provide low cost space heating in traditional solid stone-walled tenement buildings in Scotland. The SWH system uses the internal solid walls to store the solar heat collected during the day and heat the bedrooms during the night.A physical laboratory model with attached solar hot water system and a computational model of it were developed to investigate the dynamic performance of the system in use and test the cost benefits of iterations of its modes of use. The temperatures throughout the wall structure were measured under the variant solar input of a 24-h cycle. An unsteady state CFD model was developed and validated using the measured data and setup to test a number of key variables of the solar wall heating system in use. These included optimisation control strategies and maximisation strategies for the collection and storage of solar heat under various conditions. This paper presents the modelled results of the solar thermal storage and optimisation system and strategies for internal solid stone walls in a typical Scottish tenement flat in the Scottish climate.In addition the study analysed the solar availability, heating demand and domestic water supply of two typical dwellings based on two reliable methods: (a) a purpose built dynamic thermal model and (b) data collected in previous studies.The study demonstrated that the solar collection of current solar hot water systems can be improved upon so that, even in Scotland, more solar power can be harvested to contribute not only to domestic hot water, but also domestic space heating, particularly in buildings occupied over 24 h with heavy thermal mass. The cost analysis of the system in use suggested a 16 year payback period for such a system for a tenement flat.  相似文献   

12.
A small scale steam jet ejector experimental setup was designed and manufactured. This ejector setup consists of an open loop configuration and the boiler operate in the temperature range of Tb = 85–140 °C. The typical evaporator liquid temperatures range from Te = 5 °C to 10 °C while the typical water-cooled condenser pressure ranges from Pc = 1.70 kPa to 5.63 kPa (Tc = 15–35 °C). The boiler is powered by two 4 kW electric elements while a 3 kW electric element simulates the cooling load in the evaporator. The electric elements are controlled by means of variacs.Primary nozzles with throat diameters of 2.5 mm, 3.0 mm and 3.5 mm are tested while the secondary ejector throat diameter remains unchanged at 18 mm. These primary nozzles allow the boiler to operate in the temperature range of Tb = 85–110 °C. When the nozzle throat diameter is increased, the minimum boiler temperature decreases. A primary nozzle with a 3.5 mm throat diameter was tested at a boiler temperature of Tb = 95 °C, an evaporator temperature of Te = 10 °C and a critical condenser pressure of Pcrit = 2.67 kPa (22.6 °C). The system's COP is 0.253.In a case study the experimental data of a solar powered steam jet ejector air conditioner is investigated. Solar powered steam ejector air conditioning systems are technical and economical viable when compared to conventional vapour compression air conditioners. Such a system can either utilise flat plate or evacuated tube solar thermal collectors depending on the type of solar energy available.  相似文献   

13.
《Exergy》2001,1(2):91-99
Exergy analysis is applied to a turbojet engine over flight altitudes ranging from sea level to 15 000 m (∼50 000 ft), to examine the effects of using different reference-environment models. The results of this analysis using a variable reference environment (equal to the operating environment at all times) are compared to the results obtained using two constant reference environments (sea level and 15 000 m). The actual rational efficiency of the turbojet decreases with increasing altitude, ranging from a value of 16.9% at sea level to 15.3% at 15 000 m. In the most extreme cases considered, the rational efficiency calculated using a constant reference environment varies by approximately 2% from the variable reference environment value.  相似文献   

14.
Institutional buildings contain different types of functional spaces which require different types of heating, ventilating and air conditioning (HVAC) systems. In addition, institutional buildings should be designed to maintain an optimal indoor comfort condition with minimal energy consumption and minimal negative environmental impact. Recently there has been a significant interest in implementing desiccant cooling technologies within institutional buildings. Solar desiccant cooling systems are reliable in performance, environmentally friendly and capable of improving indoor air quality at a lower cost. In this study, a solar desiccant cooling system for an institutional building in subtropical Queensland (Australia) is assessed using TRNSYS 16 software. This system has been designed and installed at the Rockhampton campus of Central Queensland University. The system's technical performance, economic analysis, energy savings, and avoided gas emission are quantified in reference to a conventional HVAC system under the influence of Rockhampton's typical meteorological year. The technical and economic parameters that are used to assess the system's viability are: coefficient of performance (COP), solar fraction, life cycle analysis, payback period, present worth factor and the avoided gas emission. Results showed that, the installed cooling system at Central Queensland University which consists of 10 m2 of solar collectors and a 0.400 m3 of hot water storage tank, achieved a 0.7 COP and 22% of solar fraction during the cooling season. These values can be boosted to 1.2 COP and 69% respectively if 20 m2 of evacuated tube collector's area and 1.5 m3 of solar hot water storage volume are installed.  相似文献   

15.
Using ten years of solar radiation data, the surface albedo of twenty-four sites in the Kingdom of Saudi Arabia was calculated, and annual, seasonal, and geographical variations were investigated. The selected sites encompass a wide range of atmospheric conditions. The mean annual albedo values range from 0.15 to 0.54, and show high variability between different sites and even at individual sites. The differences between the maximum and minimum albedo range from 0.02 to 0.44. The average albedo over the entire kingdom is 0.31 ± 0.05. Seasonal investigations revealed that the lowest albedo values occurred during the summer and the highest in the winter. In examining the variations of the calculated albedo with the altitude, sites were divided into three groups: low altitude (0–500 m), middle altitude (500–1000 m), and high mountain sites (higher than 1000 m); the mean albedo values for each category are 0.32, 0.31, and 0.28, respectively. In studying the effects of latitude on albedo values, the sites were also divided into three groups: low latitudes (15–20), middle latitudes (20–25), and high latitudes (>25), for which the mean monthly albedo values are 0.25, 0.30, and 0.31, respectively.  相似文献   

16.
《Applied Thermal Engineering》2007,27(2-3):576-585
A household size trigeneration based on a small-scale diesel engine generator set is designed and realized in laboratory. Experimental tests are carried out to evaluate the performance and emissions of the original single generation (diesel engine generator); and the performances of the whole trigeneration including the diesel generator within the trigeneration system, the heat exchangers which are used to recover heat from engine exhaust, the absorption refrigerator which is driven by the exhaust heat; and the emissions from the whole trigeneration.Comparisons of the test results of two generations are also performed. The test results show that the total thermal efficiency of trigeneration reaches to 67.3% at the engine full load, comparing to that of the original single generation 22.1% only. Within the range of engine loads tested, the total thermal efficiencies of trigeneration are from 205% to 438% higher than that of the thermal efficiency of single generation.The CO2 emission per unit (kW h) of useful energy output from trigeneration is 0.401 kg CO2/kW h at the engine full load, compared to that of 1.22 kg CO2/kW h from single generation at the same engine load. Within the range of engine loads tested, the reductions of CO2 emission per unit (kW h) of trigeneration output are from 67.2% to 81.4% compared to those of single generation.The experimental results show that the idea of realizing a household size trigeneration is feasible; the design and the set-up of the trigeneration is successful. The experimental results show that the innovative small-scale trigeneration is able to generate electricity, produce heat and drive a refrigeration system, simultaneously from a single fuel (diesel) input.  相似文献   

17.
A compact air conditioning module run on biogas for rural use is proposed. The research study is to investigate the use of small biogas engine to drive the automotive vapour-compression air-conditioning system. The engine used is single-cylinder, four-stroke gasoline engine with capacity of 125 cm3 and compression ratio of 11:1. The biogas engine can be used to run the air-conditioning system with acceptable operation over a range of speeds and loads. The modular system can operate at a range of cooling loads above 3.5 kW at high coefficient of performance, with the proper speed ratio between the engine and the compressor. Overall primary energy ratio of the modular refrigeration system driven by the biogas engine was found to be maximum at about 1.0–1.2. The performance of the modular system tends to decrease with an increase in engine speed.  相似文献   

18.
This study experimentally investigates a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate solar air heater (SAH). This method substantially improves the collector efficiency by increasing the fluid velocity and enhancing the heat-transfer coefficient between the absorber plate and air. These types of collectors had been designed as a proposal to use aluminium materials to build absorber plates of SAHs at a suitable cost. The collector had been covered with a 4-mm single glass plate, in order to reduce convective loses to the atmosphere. Three different absorber plates had been designed and tested for experimental study. In the first type (Type I), cans had been staggered as zigzag on absorber plate, while in Type II they were arranged in order. Type III is a flat plate (without cans). Experiments had been performed for air mass flow rates of 0.03 kg/s and 0.05 kg/s. The highest efficiency had been obtained for Type I at 0.05 kg/s. Also, comparison between the thermal efficiency of the SAH tested in this study with the ones reported in the literature had been presented, and a good agreement had been found.  相似文献   

19.
This paper is an attempt to determine the potential for solar water heating (SWH) in South Africa and the prospects for its implementation between 2010 and 2030. It outlines the energy market conditions, the energy requirements related to residential and commercial water heating in the country and the solar water heating market dynamics and challenges. It was estimated that 98% of the potential is in the residential sector and the rest in the commercial sector. The total thermal demand for 20 years for water heating was estimated to 2.2 EJ. A ‘Moderate SWH implementation’ will provide 0.83 EJ of clean energy until 2030 and estimated cost savings of 231 billion rand. For an ‘Accelerated SWH implementation’ these figures are 1.3 EJ and 369 billion rand. The estimated accumulated reduction of CO2 emissions due to SWH can be as high as 297 Mt. The increased affordability of residential hot water due to SWH is an important social factor and solar water heating has a strong social effect.  相似文献   

20.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号