首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bangladesh is richly endowed with solar energy. Solar Photovoltaic (PV) system seems to be an appropriate form of renewable energy despite the monsoon type of climate in Bangladesh. The most attractive use of solar home system (SHS) in Bangladesh is the lighting system. People in rural Bangladesh predominantly use kerosene oil based lamps for illuminating their homes at night. Dry cell batteries are used for radio and gradually car batteries are becoming popular for running TV near grid areas where the charging facilities are available. The cost of kerosene and charging cost of battery are quite high and solar home system can compete with them in this particular field. Six cases were analyzed to find out the economic sustainability of the solar home systems at selected villages in Gazipur district, Bangladesh during October 2004–December 2004 and also questionnaire survey method was followed to collect data. This study reveals that the solar home system is financially attractive for small rural business and household lighting with entertainment. Only for household lighting purpose the system is not financially and economically viable without considering social benefits.  相似文献   

2.
Bangladesh has good potential for harnessing renewable energy sources such as solar, biomass, wind, and mini-hydropower. The country has been experiencing a gradual shift towards exploring renewable energy resources as a driving force for rural development. A few public sector and non-government organizations have started to develop renewable energy technology (RET) projects in rural areas. The lessons learnt from different demonstrations of RET projects reveal that with careful forward planning renewable energy can provide far-reaching economic, environmental, and social benefits to people living in remote rural areas in Bangladesh. This paper identifies some of the barriers that need to be overcome for the successful development of renewable energy technology sector and betterment of rural livelihoods. It does so through a critical review of policy and institutional settings, as well as present status and lessons learnt from pilot demonstration of a number of RET projects undertaken by different organizations. The study highlights policy implications of the review with the aim of supporting decision makers in formulating renewable energy policies and future plans for Bangladesh.  相似文献   

3.
Nepal, one of the least developed countries, is characterized by low per capita energy consumption and hugely dominated by traditional energy sources. Despite having enormous potential of hydro-electricity, only 50% of the total population has access to grid electricity. Firewood is the primary energy source for domestic purposes in rural environments. Due to geographical remoteness, a scattered consumer, higher costs of supply and maintenance, low consumption and low level of households’ income linking the rural areas to national electricity grid is difficult and implausible. In order to solve the energy problem in rural areas, Nepal’s government has initiated the production and distribution of several renewable energy technologies. Among several renewable technologies, micro-hydropower has been one of the most promising and widely adopted decentralized technologies to distribute electricity in rural areas. This article begins with a general overview of energy situation in Nepal. Present status and perspective of micro-hydro plants have also been discussed. Similarly, the dynamics of the relationship between electricity and socio-economic development has been analyzed by means of a typical rural electrification project in Tangting, Nepal by assessing the impacts of electricity on health, education, environment, and income in the village. The community has greatly benefitted from the arrival of environment friendly and affordable electricity. It has been concluded that the task of providing electricity to more remote and isolated villages is still challenging in Nepal. More systematic and comprehensive study supported by research and development is required to extend micro-hydro based electricity in more remote and poor communities of Nepal.  相似文献   

4.
Historically, the rural population of Nepal has been meeting their energy needs from traditional sources like fuel wood and other biomass resources. Only about 44% of the total population has access to grid electricity. Because of country’s rough and mountainous topography, high cost of grid extension, and low and scattered population density, constructing some big power plants (e.g. large hydropower) can not meet the electricity needs of all people, especially those living in rural areas. Distributed generation of electricity, using environment friendly solar photovoltaic (PV) systems, might be one of the reliable alternatives for urban as well as rural electrification. This article begins with a general overview of energy resources in Nepal. Present status and perspectives of solar PV sector have also been discussed. Benefit cost and breakeven analyses of solar PV systems in Nepalese urban areas have been carried out. The breakeven year has been calculated between 2027 and 2036 for PV systems with system life time between 40 and 25 years, respectively. It has been concluded that the solar PV systems are not the economic solutions for grid connected urban areas in Nepal. On the other hand, this article concludes that the rural electrification projects should not be decided on the basis of mere monetary benefits, rather many social aspects should be considered, and in this case, there are not convincing alternatives to solar PV systems for electrification in many rural villages in Nepal.  相似文献   

5.
Today, three billion people around the world have no access to clean drinking water and about 1.76 billion people live in areas already facing a high degree of water stress. This paper analyzes the cost-effectiveness of a stand alone small-scale renewable energy-powered seawater reverse osmosis (SWRO) system for developing countries. In this paper, we have introduced a new methodology; an energy optimization model which simulates hourly power production from renewable energy sources. Applying the model using the wind and solar radiation conditions for Eritrea, East Africa, we have computed hourly water production for a two-stage SWRO system with a capacity of 35 m3/day. According to our results, specific energy consumption is about 2.33 kW h/m3, which is a lower value than that achieved in most of the previous designs. The use of a booster pump, energy recovery turbine and an appropriate membrane, allows the specific energy consumption to be decreased by about 70% compared to less efficient design without these features. The energy recovery turbine results in a reduction in the water cost of about 41%. Our results show that a wind-powered system is the least cost and a PV-powered system the most expensive, with finished water costs of about 0.50 and 1.00$/m3, respectively. By international standards, for example, in China, these values are considered economically feasible. Detailed simulations of the RO system design, energy options, and power, water, and life-cycle costs are presented.  相似文献   

6.
Historically the promotion of renewable energy technologies in isolated areas has involved international donors or governments subsidising the initial capital investment. This paper proposes an alternative support mechanism for remote villages based on the generation of renewable electricity. This communication presents an evaluation of the Renewable Energy Premium Tariff (RPT) scheme, a locally adapted variation of the Feed-in Tariff tailored for decentralised grids of developing countries. The RPT scheme stimulates the deployment of renewable energy technologies by paying for renewable electricity generated. A good-quality performance is secured since the support is given based on the electricity produced by renewables, not for the initial capital investment.  相似文献   

7.
Energy and development are closely intertwined. Yet, increasing fossil fuel-based energy consumption contributes significantly to environmental problems both locally and globally. This article explores the interlinkages between local livelihood and environmental benefits from the provision of energy to remote rural households through small hydropower development. The analysis is based on research carried out around a large development project designed to assist the Government of India in the optimum utilization of small hydropower resources in the Himalayan and sub-Himalayan regions. There are about 100,000 villages in India that are not connected to electricity supply, many of them in the hilly regions with ample hydropower potential. The project aimed to demonstrate the utility of and options for providing electricity to such villages through clean mini-hydro. The article addresses the nature of the impacts of the demonstration small hydel schemes on the local communities, to what extent they translate into environmental benefits both locally and globally, and the perceptions and participation of the local communities in these small hydro schemes. The study explores the impacts of the schemes on financial capital, natural capital, social capital, physical capital, human capital, and gender equity in the local communities. It further provides a discussion on the links between local and global environmental benefits. Overall, it is found that the schemes’ impacts both on the local communities and the environment are mostly marginally positive or neutral, although achieving clearly demonstrable benefits would require major upscaling of the effort involving broader changes than possible under this project. Furthermore, it is argued that some of the assumptions behind the project design were faulty. Involvement of the local communities and direct livelihood benefits to them are essential for the long-term sustainability of the small hydro schemes. The discussion and conclusions are intended to provide guidance to programmes and projects that aim to promote environmentally sound energy in the rural areas of developing countries.  相似文献   

8.
Nepal, one of the least developed countries, is characterized by very low per capita energy consumption. Because of a lack of other commercial sources of energy, the country relies heavily on traditional fuel source, especially firewood. In order to solve the energy problem in rural areas, the country initiated production and distribution of several renewable energy technologies. Among several technologies, biogas has been proved to be viable and emerged as a promising technology. It has been one of the most successful models for the production of clean, environmental friendly, cost effective source of energy and has multiple benefits. In this paper we present the current state and discuss benefits of the biogas technology in Nepal. Improved health, increased crop productivity, saved time for women are some of the major benefits to the users. It provides economic benefit to the country through reduced deforestation and carbon trading. In addition, by reducing green house gas emission, the technology helps in mitigating global warming and climate change. Thus biogas is a renewable, sustainable and clean source of energy that provides multiple benefits; locally and globally. With some exception, cattle dung has been used primarily as an input and the technology is limited to households only. More systematic and comprehensive study supported by research and development is required to use other degradable waste such as municipal waste to produce biogas on a large scale.  相似文献   

9.
As people living in remote areas rely on SPS systems for their electricity and water needs, they hold a practical and non-idealistic perspective towards using renewable energy technologies. This research explores pastoral owner-operators’ personal experience and opinion of stand-alone power supply (SPS) systems over 30 years in remote pastoral regions Western Australia (WA). This research was undertaken qualitatively in terms of the experience of remote Australians of energy service delivery and SPS system performance to obtain personal opinions of remote pastoral people who rely on SPS systems to provide basic needs. This research concluded that the impressive growth in total renewable energy capacity in remote off-grid SPS systems in WA is primarily due to subsidies that aim to fuel-switch to renewable energy sources. Despite this, other major reasons for the increases in renewable energy capacity are escalating conventional fuel costs, difficulties in attracting qualified service contractors, increasing desire for quiet, 24-h energy services, and a range of unique situations. Despite the increased use of renewable energy technologies, this research reinforced previous research conclusions that consistently found both the conventional and renewable energy service sector wanting in remote areas. Three areas needing attention to sustain the growth in renewable capacity are: technical SPS system integration, service infrastructure, and technical reliability.  相似文献   

10.
Official statistics estimate that almost two billion people have no direct access to electrical networks, 500,000 of them living in European Union and more than one tenth of them in Greece. An autonomous photovoltaic system is one of the most interesting and environmental friendly technological solutions for the electrification of remote consumers or entire rural areas. The primary objective of this current study is to determine the optimum dimensions of an appropriate stand-alone photovoltaic system, able to guarantee the coverage of remote consumers energy demand located in typical Greek territories using long-term measurements, under the restriction of minimum initial cost. Accordingly, the impact of acceptable reliability level on the stand-alone photovoltaic system energy behaviour and initial cost is also examined. Finally, special emphasis is laid on the detailed energy balance analysis of selected stand-alone photovoltaic system configurations, on an hourly basis at least. According to the results obtained, a properly sized stand-alone photovoltaic system is a motivating prospect for the energy demand problems of numerous existing isolated consumers all around Greece.  相似文献   

11.
About 70% of 1.2 billion people live in rural areas in China. In spite of the rapid growth of China's national economy in recent decades, energy problems still have a very real impact on economic and environmental development, especially in rural areas. In order to mitigate the adverse impact of coal burning to the regional and global environment, the Chinese Government has adopted vigorous measures to develop renewable energy technologies.  相似文献   

12.
S.K. Singal  Varun  R.P. Singh 《Renewable Energy》2007,32(15):2491-2501
India has a large number of remote small villages and islands that lack in the electricity, and probability of connecting them with the high voltage gridlines in the near future is very poor due to financial and technical constraints. The main electrical load in these villages is domestic. In this paper a study has been presented for sustainable development of renewable energy sources to fulfill the energy demands of a remote island having a cluster of five villages. The total potential of electricity from these resources is estimated to be equivalent to 3530 kWh/day whereas demand is only 2310 kWh/day with an installed capacity of 450 kW, which is sufficient to replace the existing power generation system dominated by diesel operated system.  相似文献   

13.
In the recent years, decentralized power generation using locally available renewable energy resources has been recognized as a cost effective alternative of uneconomical grid extension. The present paper deals with the size optimization of Integrated Renewable Energy System (IRES) for a cluster of villages of Uttarakhand state in India. The proposed IRES consists of locally available renewable energy resources of Micro Hydro Power (MHP), biogas, biomass, wind and solar energy in order to meet the electrical and cooking demands of the study area. A system operation strategy has been developed in the paper for size optimization of IRES. Also, the loss of power supply probability (LPSP) has been used as the reliability criteria in order to ensure the continuous supply of power without any failure problems. Further, in order to utilize renewable energy resources in different contributions, four different resource scenarios are considered for the study area. Finally, the total net present cost (NPC) of the considered scenarios has been optimized using discrete harmony search (DHS) algorithm. Among different scenarios, MHP-biogas-biomass-wind-solar-battery based IRES offers the lowest net present cost of INR 49.0309 million at the estimated LCOE of INR 5.47/kWh.  相似文献   

14.
An assessment is made as to whether renewable energy use for electricity generation in the EU was beneficial throughout the cycle of high and low oil prices. Costs and benefits are calculated with the EU statistics for the period of low oil prices 1998–2002 and high oil prices 2003–2009. The share of renewable energy in electricity production was 21% of all energy resources in 2008, growing on average 5% a year during 2003–2008 compared to nil growth of the fossil fuels mix. Correlations show significant impacts of growing renewable energy use on changes in consumers' electricity prices during the high and rapidly increasing fossil fuel prices in the period 2005–2008. The growing use has contributed to price decrease in most countries that use more renewable energy and price increase in many countries that use little renewable energy. Costs and benefits are assessed through comparison between the observed consumers' electricity prices and simulated prices had they followed the costs of fossil fuel mix. A net benefit of 47 billion euro throughout the oil price cycle is attributable to the growing use of renewable energy, which is on average 8 billion euro a year. This net benefit is larger than the total public support for renewable energy. The net benefit would be larger had the EU anticipated high oil prices through more public support during low oil prices, as this would create productive capacity, but countries' interests increasingly differed. An anti-cyclic EU policy is recommended.  相似文献   

15.
A Delphi Survey is a series of questionnaires that allow experts or people with specific knowledge to develop ideas about potential future developments around an issue. The Delphi questionnaires were developed throughout the foresight process in relation to the responses given by participants in bibliometric and SWOT analysis conducted prior to the Delphi survey. In this paper, Turkey's renewable energy future is evaluated using the Delphi method. A two-round Delphi research study was undertaken to determine and measure the expectations of the sector representatives regarding the foresight of renewable energies. First and second round of Delphi study were carried out by using online surveys. About 382 participants responded in the first round of the Delphi questionnaire yielding a respond rate of 20.1%, whereas 325 participants responded at the second round yielding a respond rate of 84.9%. About 50% of Turkey's energy demand was foresighted to be met by renewable energies around 2030. The results showed that all types of renewable energies would not only provide economic and environmental benefits but also improve living standards.  相似文献   

16.
Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system.  相似文献   

17.
Bruce Robins 《Refocus》2006,7(3):162-39
Remote rural communities in developing countries are at a similar economic stage of development as was the developed world more than 100 years ago when electricity was used for more than 50 years for lighting and radio only. Not until people could afford refrigerators did electricity demand grow. Without direct capital subsidies by governments and cross subsidies by utilities the developed world would not be as developed as it currently is and certainly not those communities outside major cities and towns. Many rural areas in the developed world would be in a similar energy plight to those currently in the developing world! There currently is no technology that can meet a subsidy free energy supply anywhere in remote rural communities. The least cost option to meet the basic energy needs for the remote developing world is a properly designed solar system (systems designed up to an availability level not down to a price). To supply the one billion people without access to electricity would cost about US$112 billion (2005 $) in total subsidies using solar. But this will be less than the US$450 billion (2005) subsidy to meet their basic lighting needs using diesel energy.The user pays principle might work for McDonalds but 20 years working in developing countries has clearly demonstrated that there is something dramatically wrong with the current economic paradigms where basic infrastructure is required. It should not be the Private Sector that funds the development of remote rural lighting, they have demonstrated that they can only deliver too little too late, but the Public sector through their existing utilities with government direct subsidies if another generation is not to be lost to development. To demonstrate the need for a paradigm shift, over the past 20 years I have implemented and installed solar projects worth more than US$100million in many developing countries, but none with their utilities or energy departments. All the projects have been with rural development authorities that recognised the immediate need of their constituents and were not at all fussed by the concept of subsidisation. They actually know what it was like on the ground. Something that many energy authorities and utilities I fear have no idea about.  相似文献   

18.
The energy requirement in India is steadily increasing and this requirement is being met by both commercial and renewable energy sources. Due to the non-availability of sufficient resources and a considerable amount of emission of pollutants from commercial energy, it is now being felt that renewable energy has to be utilized to a greater extent. An optimization model was developed to determine the optimum allocation of renewable energy in various end-uses in 2020–2021, taking into account commercial energy requirement. In lighting end-use renewable energy to an extent of 1.27×1015 kJ can be utilized. Scenarios were developed for various parameters and sensitivity analysis was performed on the model. It was found that for a 3% increase in social acceptance of bio resources, there was 65% decrease in solar PV utilization and to that extent bioresources were introduced. Similar analysis was performed on the model by changing the demand, potential, reliability, emission and employment factors. The analysis revealed the critical parameters for the utilization of a renewable energy source. Using the critical parameters, appropriate policies can be formulated for promoting renewable energy sources.  相似文献   

19.
This study assesses the factors responsible for the success and failure of renewable energy access programs in Bangladesh, China, Laos, Mongolia, Nepal, Sri Lanka, India, Indonesia, Malaysia, and Papua New Guinea. Based on 441 research interviews over the course of four years, site visits to 90 renewable energy facilities, and focus groups with almost 800 community members in 10 countries, this study develops a series of overarching qualitative factors that correlate with programs that met their targets, sometimes ahead of schedule, and produced measurable benefits exceeding costs. The inverse of these factors is associated with programs that did not meet their targets, were behind schedule, and/or produced measurable costs exceeding benefits. It concludes by offering 10 lessons for energy analysts and development practitioners concerning appropriate technology, income generation, financing, political leadership, capacity building, programmatic flexibility, marketing and awareness, stakeholder engagement, community ownership, and technical standardization.  相似文献   

20.
As states consider revising or developing renewable portfolio standards (RPS), they are evaluating policy costs, benefits, and other impacts. We present the first U. S. national-level assessment of state RPS program benefits and impacts, focusing on new renewable electricity resources used to meet RPS compliance obligations in 2013. In our central-case scenario, reductions in life-cycle greenhouse gas emissions from displaced fossil fuel-generated electricity resulted in $2.2 billion of global benefits. Health and environmental benefits from reductions in criteria air pollutants (sulfur dioxide, nitrogen oxides, and particulate matter 2.5) were even greater, estimated at $5.2 billion in the central case. Further benefits accrued in the form of reductions in water withdrawals and consumption for power generation. Finally, although best considered resource transfers rather than net societal benefits, new renewable electricity generation used for RPS compliance in 2013 also supported nearly 200,000 U. S.-based gross jobs and reduced wholesale electricity prices and natural gas prices, saving consumers a combined $1.3–$4.9 billion. In total, the estimated benefits and impacts well-exceed previous estimates of RPS compliance costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号