首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

2.
In concentrating solar power (CSP) plant, a novel method involving the use of thermocline can be employed to augment the capability of the thermal energy storage system (TES). The rate of thermocline degradation can be reduced by packing encapsulated phase change material (PCM) in the TES. The thermal performance of the packed bed latent heat thermal energy storage system (PBTES) can be further enhanced by employing different diameters of PCM capsules arranged in multiple layers. In this paper, the thermal and exergetic performance of single-layered and two-layered PBTES is evaluated for varying mass flow rate, PCM capsule diameter and bed height of larger PCM capsules using a dynamic model based on simplified energy balance equations for PCM and heat transfer fluid (HTF). The single-layered PBTES has a lower TES latent charging rate than the two-layered PBTES. The charging efficiency and charging time of two-layered PBTES are increased by 15.85% and 16.85%, respectively for reducing the HTF mass flow rate by 14.29%. A higher stratification number can be achieved by using a two-layered PBTES instead of a single-layered PBTES filled with the corresponding larger diameter PCM capsules. The second law efficiency of the two-layered PBTES is found to be less than that of the single-layered PBTES. A decrease in the bed height of larger PCM capsules decreases the exergetic efficiency of the two-layered PBTES by 3.27%. The findings from this study can be used in further designing and optimising the multi-layered PBTES.  相似文献   

3.
基于多孔介质传热理论,建立了储能堆积床的传热模型.在此基础上分析了换热流体流量、温度、单元尺寸、相变材料导热系数和孔隙率等参数对堆积床传热特性的影响.研究表明,提高相变材料的导热系数,增大换热流体温差或减小单元尺寸对堆积床传热速率有明显提高,而提高换热流体流量,增大对流换热系数对传热速率的影响不明显.因而强化相变材料侧的传热过程是提高堆积床传热速率的有效途径.  相似文献   

4.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

5.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

6.
The dynamic characteristics of solar heat storage system with spherical capsules packed bed during discharging process are studied. According to the energy balance of solar heat storage system, the dynamic discharging processes model of packed bed with spherical capsules is presented. Paraffin is taken as phase change material (PCM) and water is used as heat transfer fluid (HTF). The temperatures of PCM and HTF, solid fraction and heat released rate are simulated. The effects of inlet temperature of HTF, flow rate of HTF and porosity of packed bed on the time for discharging and heat released rate are also discussed. The following conclusion can be drawn: (1) the heat released rate is very high and decreases rapidly with time during the liquid cooling stage, it is stable at the solidification cooling stage, then it decreases to zero at the solid cooling stage. (2) The time for complete solidification decreases when the HTF flow rate increases, but the effect is not so obvious when the HTF flow rate is higher than 13 kg/min; (3) compared to the HTF inlet temperature and flow rate, the influence of porosity of packed bed on the time for complete solidification is not so significant.  相似文献   

7.
Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.  相似文献   

8.
基于高温相变材料,对填充床储热系统中储热单元球体的储热性能进行了模拟研究.研究了不同传热流体温度和球体直径对球体储热性能的影响规律,对导热为主的相变储热过程与导热和自然对流共同作用的相变储热过程进行了比较分析,同时还探讨了高温辐射换热的影响.结果表明,相变时间随球体直径的增大而增大,随传热流体温度的增大而减小.当考虑相变区域自然对流时,总的相变时间显著减少,和单纯导热相比,完全相变时间缩短了近16%.在导热和自然对流的基础上加上辐射传热后可以看出,辐射换热强化了球体内的传热过程,加快了相变材料的熔化速度,强化了自然对流的作用.  相似文献   

9.
Latent heat thermal storage units span a wide and varied range of applications in the domestic, industrial and space based activities. Numerical investigations on the performance enhancement of a solar dynamic latent heat thermal storage (LHTS) unit employing multiple phase change materials (PCM) and fins are made. The LHTS unit has been studied for the charging mode alone. Enthalpy based formulation of the energy equations governing the behaviour of the LHTS system has been made and compared with the response of a single PCM unit. The governing conjugate equations have been solved employing finite difference techniques. The results show an appreciable enhancement in the rate of melting of PCM and nearly uniform exit temperature of heat transfer fluid (HTF) in the multiple PCM LHTS unit.  相似文献   

10.
The present paper reports on the utilization of granular phase change composites (GPCC) of small particle diameter (1–3 mm) in latent heat thermal energy storage (LHTES) systems. The phase changing parameters (phase change temperature, latent heat, and energy storage capacity) of GPCC have been determined using differential scanning calorimeter (DSC) and temperature-history methods. Further analysis of measurement results has been conducted to describe the evolution of latent heat with temperature during phase change in terms of liquid fraction–temperature relationships. Charging and discharging packed bed column experiments have been also carried out for different operating conditions to analyze the potential of GPCC for packed bed thermal energy storage. The present column results clearly demonstrate the dependence of temperature variation along the packed bed and the overall performance of the storage unit on the phase change characteristics of GPCC. Small and non-uniform particles diameters of GPCC and heterogeneity of the bed material complicate the phenomena of heat transfer and evolution of latent heat in the packed bed. Mathematical modeling of the packed bed that considers the GPCC and air as two separate phases with inter-phase heat transfer is presented. Comparisons between experimental and numerical results are used to evaluate the sensitivity of numerical simulations to different model parameters.  相似文献   

11.
The present study aims to develop an approach to define the optimal dimensions of a phase change material (PCM) packed bed heat exchanger used as a cold thermal energy storage system in a conventional refrigerator. The heat exchanger is used to extend the daily refrigerator downtime and to ensure effective temperature control to contribute to the improved performance of the refrigerator. The mathematical model has been developed according to the technical characteristics and operating conditions of the refrigerator, the technical characteristics of the ventilator, and the thermo‐physical properties of the PCM. The model parameters that have been analyzed are the PCM melting time, air velocity range for tolerable efficient operating conditions, and the pressure drop through the PCM heat exchanger. As a case study, the approach was applied to a 600‐L conventional refrigerator equipped with a 63‐W ventilator. It has been found that over the tolerated velocity range of [2.5‐3.7 m/s], the optimal dimensions of the PCM heat exchanger are defined for an optimal velocity of 3.495 m/s. This is equivalent to an optimum sphere diameter of 0.071 m, a PCM heat exchanger length of 0.213 m, and a width of 0.148 m. The PCM heat exchanger ensures an extended compressor downtime of 12.6 hours for an ice‐PCM mass of 7.15 kg and occupies only 1.2% of the useful volume of the refrigerator.  相似文献   

12.
The charge/discharge rate of a spherical phase change material (PCM) capsule was assessed in consideration of phase change phenomenon and the combined effect of thermal radiation and heat convection in the charging/discharging processes. The heat transfer model was developed based on a single PCM capsule. The equivalent heat flux was evaluated by using the thermal resistance method. In consideration of the thermal radiation, the equivalent charge/discharge rate was improved, and the temperature rising of the PCM was actually much faster in the charging/discharging processes. It was indicated that the influence of the thermal radiation became more significant for PCM capsules under a small Re number (constant air velocity) and for high‐grade thermal energy storage. The analytical results showed that the highest heat flux contributed by cold thermal radiation occupied 30% and 62% of that by heat convection for PCM capsules with radius of 10 and 40 mm, respectively. This illustrated the crucial value of thermal radiation on the charge/discharge rate of PCM capsules with a large radius. However, for smaller size PCM capsules, the equivalent heat flux was larger under the same fluid flow velocity, and it decreased more promptly with time, because the heat convection that played the dominant role in charge/discharge processes was sensitively affected by the radius of the PCM capsules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the phase change temperature, latent heat and thermal stability of the capric acid–stearic acid binary system and 48# paraffin–liquid paraffin binary system were experimentally studied. The experimental results showed that the phase change temperature and phase change latent heat change with the content of the component. The phase change temperature of binary mixtures changes in a wide range, so they can be used in different fields by adjusting mixing ratio. The phase change latent heat of fatty acid mixtures is higher than that of paraffin mixtures. The thermal stability of fatty acid mixtures is better than that of paraffin mixtures. The mixtures used in the phase change material (PCM) wall or the PCM floor as energy storage materials are given in the paper.  相似文献   

14.
徐阳  岳晨  高鹏举 《太阳能学报》2022,43(12):531-539
针对给定太阳日辐射曲线,研究集成蓄热单元的太阳光热系统的整体能量的动态转化特性及关键参数影响规律。结果表明:填料床总储热量与传热流体进口流速呈非线性变化,当传热流体进口流速 uf =0.006 m/s时,填料床总储热量最大;在给定填料总容量和uf =0.006 m/s的条件下,填料床高径比为5的填料床具有更高的储热能力;在该计算条件下,uf =0.006 m/s、填料床高径比为5及填料量相对值为1时,太阳光热能实现最大程度上的转化和储存。  相似文献   

15.
A theoretical model has been developed for analysis and optimization of the solar system using phase change material (PCM). The later consists of a solar air heating collector coupled with a cylindrical storage tank which contains spherical capsules filled with a PCM. Energy and exergy analyses are carried out to understand the behavior of the system using single PCM or multiple PCMs. Numerical results show that the performance of the latent thermal storage system can be ameliored by the judicious choice of the melting temperature of the PCM.  相似文献   

16.
This paper presents, compares and validates two different mathematical models of packed bed storage with PCM, more specifically the heat transfer during charge of the PCM. The first numerical model is a continuous model based on the Brinkman equation and the second numerical model treats the PCM capsules as individual particles (energy equation model). Using the Brinkman model the flow field inside the porous media and the heat transfer mechanisms present in the packed bed systems can be described. On the other hand, using the energy equation model the temperature gradient inside the PCM capsules can be analysed. Both models are validated with experimental data generated by the authors. The experimental set up consists mainly of a cylindrical storage tank with a capacity of 3.73 L full of spherically encapsulated PCM. The PCM used has a storage capacity of 175 kJ/kg between ?2–13 °C. The results from the energy equation model show a basic understanding of cold charging. Moreover, three different Nu correlations found in the literature were analysed and compared. All of them showed the same temperature profile of the PCM capsules; hence any of them could be used in future models. The comparison between both mathematical models indicated that free convection is not as important as forced convection in the studied case.  相似文献   

17.
建立相变蓄热胶囊的三维有序及无序堆积模型,在此基础上分析相变蓄热胶囊有序及无序对蓄热系统特性的影响。通过对蓄热系统的蓄热量、蓄热用时、蓄热效率及系统内温度分布等关键性能指标情况分析,提出一种判定蓄热终点的新方法。结果表明:当采用有序堆积时系统的各项性能指标最优,叉排堆积时蓄热效率最低,而无序堆积时蓄热总量最少。另外,换热流体流速增加可加快蓄热过程,但此时蓄热系统蓄热效率较低。  相似文献   

18.
A computational fluid dynamics (CFD) model was developed for the simulation of a phase change thermal energy storage process in a 100 l cylindrical tank, horizontally placed. The model is validated with experimental data obtained for the same configuration. The cold storage unit was charged using water as the heat transfer medium, flowing inside a horizontal tube bundle, and the selected phase change material (PCM) was microencapsulated slurry in 45% w/w concentration. The mathematical model is based on the three-dimensional transient Navier–Stokes equations with nonlinear temperature dependent thermo-physical properties of the PCM during the phase change range. These properties were experimentally determined using analytical methods. The governing equations were solved using the ANSYS/FLUENT commercial software package. The mathematical model is validated with experimental data for three different flow rates of the heat transfer fluid during the charging process. Bulk temperature, heat transfer rate and amount of energy stored were used as performance indicators. It was found that the PCM bulk temperatures were predicted within 5% of the experimental data. The results have also shown that the total accumulated energy was within 10% of the observed value, and thus it can be concluded that the model predicts the heat transfer inside the storage system with good accuracy.  相似文献   

19.
组合相变材料换热管吸热器性能的数值分析   总被引:2,自引:1,他引:2  
吸热器是空间太阳能热动力发电系统关键部件之一。传统吸热器采用单一熔点的相变材料。该文提出了由不同溶点的相变材料组成的组合PCM换热管吸热器模型,计算了换热管最大温度、工质出口温度、各容器PCM熔化率、换热管总PCM熔化率等结果。并与单一PCM换热管吸热器进行了比较分析,说明了采用组合PCM换热管可以很好的提高吸热器的性能,对于减少工质温度波动、减少吸热器质量有重要的意义。计算结果可以较好的指导吸热器的设计。  相似文献   

20.
Phase change material (PCM) is integrated with a metal hydride (MH) storage reactor to enhance its performance. The main function of the PCM is to store the heat released by the MH reactor during the hydrogenation process and reuse it later during the dehydrogenation process. In such a system, the exothermic/endothermic reactions are highly dependent on the heat transfer rate between the MH reactor and the PCM bed. To increase the heat transfer rate, a new configuration of the MH-PCM storage system is proposed. The new configuration consists of an MH reactor encircled by a cylindrical sandwich bed packed with PCM. The results indicate that the proposed configuration of the MH-PCM system improved the heat transfer rate which accordingly reduced the time duration of the hydrogenation and dehydrogenation processes by 81.5% and 73%, respectively, compared to a conventional MH-PCM system that includes only a single PCM bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号