首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Thermal Engineering》2002,22(15):1705-1716
A numerical model to simulate a storage system composed of spherical capsules filled with PCM placed inside a cylindrical tank fitted with a working fluid circulation system to charge and discharge the storage tank. The simplified transient one-dimensional model is based on dividing the tank into a number of axial layers whose thickness is always equal or larger than a capsule diameter. It is also assumed that the temperature of the working fluid is uniform and equal to the average temperature of the layer. The solidification process inside the spherical capsule is treated by using a conductive one-dimensional phase change model with convective boundary condition on the external surface. The convection present in the liquid phase of the PCM is treated by using an effective heat conduction coefficient in the liquid region of the PCM. The solution of the differential equations is realized by the finite difference approximation and a moving grid inside the spherical capsules. The geometrical and operational parameters of the system are investigated both numerically and experimentally and their influence on the charging and discharging times was investigated.  相似文献   

2.
In concentrating solar power (CSP) plant, a novel method involving the use of thermocline can be employed to augment the capability of the thermal energy storage system (TES). The rate of thermocline degradation can be reduced by packing encapsulated phase change material (PCM) in the TES. The thermal performance of the packed bed latent heat thermal energy storage system (PBTES) can be further enhanced by employing different diameters of PCM capsules arranged in multiple layers. In this paper, the thermal and exergetic performance of single-layered and two-layered PBTES is evaluated for varying mass flow rate, PCM capsule diameter and bed height of larger PCM capsules using a dynamic model based on simplified energy balance equations for PCM and heat transfer fluid (HTF). The single-layered PBTES has a lower TES latent charging rate than the two-layered PBTES. The charging efficiency and charging time of two-layered PBTES are increased by 15.85% and 16.85%, respectively for reducing the HTF mass flow rate by 14.29%. A higher stratification number can be achieved by using a two-layered PBTES instead of a single-layered PBTES filled with the corresponding larger diameter PCM capsules. The second law efficiency of the two-layered PBTES is found to be less than that of the single-layered PBTES. A decrease in the bed height of larger PCM capsules decreases the exergetic efficiency of the two-layered PBTES by 3.27%. The findings from this study can be used in further designing and optimising the multi-layered PBTES.  相似文献   

3.
Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.  相似文献   

4.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
High temperature latent heat thermal energy storage technology is a promising option for future cost reduction in parabolic trough or tower power plant. However, low thermal conductivity of phase-change material (PCM) is the major shortage of latent heat thermal energy storage. This paper proposed a new thermal energy storage system (TESS) that metal foam and fins were used to enhance the effective conductivity of PCM. Three-dimensional physical model was established for representative element extracted from TESS. Considering the natural convection in the liquid part of PCM, volume-averaged mass and momentum equations were employed with the Brinkman–Forchheimer extension to Darcy law to simulate the porous resistance. A local thermal equilibrium model was developed to obtain temperature field. The governing equations were solved with finite-volume approach and enthalpy method was employed to account for phase change. The model was firstly validated against low temperature experiments from the literature and then used to predict the charging and discharging behavior of the present TESS. The position of solid/liquid interface was explored and the effects of design parameters, including that of metal foam pore density and porosity, configuration of fin and Rayleigh number, on melting and solidifying rate and energy stored in each time step were revealed and discussed. The results indicate that metal foam and fins can effectively improve the heat transfer performance for thermal storage system and decrease charging and discharging time.  相似文献   

6.
The use of a heat exchanger using phase change material (PCM) is an example of latent heat thermal energy storage (LHTES). In this study, the charging of PCM (RT50) is studied in a double pipe heat exchanger. The designing of the heat exchanger needs to be optimized for operating and boundary conditions to store latent heat efficiently. The size of the equipment and the amount of PCM are also important to calculate the latent heat storage capacity of the LHTES device. In this study, the amount of PCM taken is quite high to avoid sensible heat transfer and to maximize the heat content of PCM. The charging process of PCM is numerically simulated using an enthalpy-porosity model. The study includes the effect of inlet temperature and flow rate of high-temperature-fluid (HTF) and concludes that both play an important role in determining the charging time. The continuous increase in inlet temperature of HTF can decrease the charging time of PCM in the heat exchanger. However, the continuous increase in the HTF flow rate cannot show the same effect. The charging time can only be minimized with a specified flow rate regime for a specific inlet temperature of HTF. These factors consequently affect the efficiency of the heat exchanger.  相似文献   

7.
A theoretical model was developed to predict the transient behavior of a shell-and-tube storage unit with the phase change material (PCM) on the shell side and the heat transfer fluid (HTF) circulating inside the tubes. The multidimensional phase change problem is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. The numerical predictions are validated with experimental data. A series of numerical experiments are then undertaken to assess the effects of various thermal and geometric parameters on the heat transfer process and on the behavior of the system. Results show that the shell radius, the mass flow rate, and the inlet temperature of the HTF must be chosen carefully in order to optimize the performance of the unit.  相似文献   

8.
The process of charging of an encapsulated ice thermal energy storage device (ITES) is thermally modeled here through heat transfer and thermodynamic analyses. In heat transfer analysis, two different temperature profile cases, with negligible radial and/or stream-wise conduction are investigated for comparison, and the temperature profiles for each case are analyzed in an illustrative example. After obtaining temperature profiles through heat transfer analysis, a comprehensive thermodynamic study of the system is conducted. In this regard, energy, thermal exergy and flow exergy efficiencies, internal and external irreversibilities corresponding to flow exergy, as well as charging times are investigated. The energy efficiencies are found to be more than 99%, whereas the thermal exergy efficiencies are found to vary between 40% and 93% for viable charging times. The flow exergy efficiency varies between 48% and 88% for the flows and inlet temperatures selected. For a flow rate of 0.00164 m3/s, the maximum flow exergy efficiency occurs with an inlet temperature of 269.7 K, corresponding to an efficiency of 84.3%. For the case where the flow rate is 0.0033 m3/s, the maximum flow exergy efficiency becomes 87.9% at an inlet temperature of 270.7 K. The results confirm the fact that energy analyses, and even thermal exergy analyses, may lead to some unrealistic efficiency values. This could prove troublesome for designers wishing to optimize performance. For this reason, the flow exergy model provides the most useful information for those wishing to improve performance and reduce losses in such ITES systems.  相似文献   

9.
A thermal network model is developed and used to analyze heat transfer in a high temperature latent heat thermal energy storage unit for solar thermal electricity generation. Specifically, the benefits of inserting multiple heat pipes between a heat transfer fluid and a phase change material (PCM) are of interest. Two storage configurations are considered; one with PCM surrounding a tube that conveys the heat transfer fluid, and the second with the PCM contained within a tube over which the heat transfer fluid flows. Both melting and solidification are simulated. It is demonstrated that adding heat pipes enhances thermal performance, which is quantified in terms of dimensionless heat pipe effectiveness.  相似文献   

10.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

11.
The application of a phase change material (PCM) as thermal energy storage observed unprecedented growth due to its large latent heat storage capacity at a constant temperature. However, the design of an energy storage heat exchanger is a challenging task because of the poor thermal conductivity of PCMs. In an effort to improve the heat exchanger design, this paper presents a numerical performance investigation of a PCM-based multitube heat exchanger incorporated with two new fin configurations. The analysis of the results shows that the placement of fins is one of the important aspects, which needs to be cogitated in the design of heat exchangers.  相似文献   

12.
Free cooling night ventilation is the process of storing the coolness in the night time and releasing this coolness in hot day time. In this paper, a numerical study was carried out to simulate and to find out the optimum design for plate type storage filled with phase change material (PCM) which is used in night ventilation systems. The effect of different parameters such as thickness of PCM-plates, inlet air temperature and air mass flow rates on melting front, cooling power, outlet temperature and thermal performance of heat exchanger was studied. The results showed that cooling power can be increased by increasing the mass flow rate. Also, the thickness of the plates in the storage device plays an important role in the thermal performance of the unit and has a linear relation with the melting process duration of PCM for considered configuration.  相似文献   

13.
《Energy Conversion and Management》2005,46(15-16):2592-2604
Numerical analysis of melting and freezing of a PCM thermal storage unit (TSU) with varying wall temperature is presented. The TSU under analysis consists of several layers of thin slabs of a PCM subjected to convective boundary conditions where air flows between the slabs. The model employed takes into account the variations in wall temperature along the direction of air flow as well as the sensible heat. The paper discusses typical characteristics of the melting/freezing of PCM slabs in an air stream and presents some results of the numerical simulation in terms of air outlet temperatures and heat transfer rates during the whole periods of melting and freezing. Considerations in the design of the TSU are also given.  相似文献   

14.
The present paper describes the analysis of the melting process in a single vertical shell‐and‐tube latent heat thermal energy storage (LHTES), unit and it is directed at understanding the thermal performance of the system. The study is realized using a computational fluid‐dynamic (CFD) model that takes into account of the phase‐change phenomenon by means of the enthalpy method. Fluid flow is fully resolved in the liquid phase‐change material (PCM) in order to elucidate the role of natural convection. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Temperature profiles are analyzed and compared with experimental data available in the literature. Other relevant quantities are also monitored, including energy stored and heat flux exchanged between PCM and HTF. The results demonstrate that natural convection within PCM and inlet HTF temperature significantly affects the phase‐change process. Thermal enhancement through the dispersion of highly conductive nanoparticles in the base PCM is considered in the second part of the paper. Thermal behavior of the LHTES unit charged with nano‐enhanced PCM is numerically analyzed and compared with the original system configuration. Due to increase of thermal conductivity, augmented thermal performance is observed: melting time is reduced of 15% when nano‐enhanced PCM with particle volume fraction of 4% is adopted. Similar improvements of the heat transfer rate are also detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
《Applied Thermal Engineering》2003,23(13):1647-1664
Porous latent heat thermal energy storage for thermoelectric cooling is simulated via a matrix-based enthalpy formulation, having the temperature as unknown, in a three-dimensional domain. The system is made up of two aluminum containers; the inner one contains the cooling objective in water suspension and the outer one the phase change material (PCM) in a porous aluminum matrix. The system’s charging and discharging processes are simulated for constant thermoelectric module cold side temperature under different porosities of the aluminum matrix. The mathematical modeling approach simplifies the analysis while the metal matrix in the PCM greatly improves performance. A direct application of the studied system is vaccine conservation in solar powered thermoelectric cooling systems.  相似文献   

16.
基于列管式换热器具有传热面积大、结构紧凑、操作弹性大等优点,使其在相变储能领域具有广阔的应用前景。本文建立一种新型列管式相变蓄热器模型,在不考虑自然对流的情况下,利用Fluent软件对相变蓄热器进行二维储热过程的数值模拟。本文主要研究斯蒂芬数、雷诺数、列管排列方式、肋片数以及相变材料的导热系数对熔化过程的影响,并对熔化过程中固液分界面的移动规律进行了分析。模拟结果表明,内肋片强化换热效果明显,特别是对应用低导热系数相变材料[导热系数小于1 W/(m·K)]的列管式蓄热器,相对于无肋片结构,加入肋片(Nfn=2)可缩短熔化时间52.6%。  相似文献   

17.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

18.
Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used later for heating and cooling applications and for power generation. TES has recently attracted increasing interest to thermal applications such as space and water heating, waste heat utilisation, cooling, and air conditioning. Phase change materials (PCMs) used for the storage of thermal energy as latent heat are special types of advanced materials that substantially contribute to the efficient use and conservation of waste heat and solar energy. This paper provides a comprehensive review on the development of latent heat storage (LHS) systems focused on heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy, and the formulation of the phase change problem. The main categories of PCMs are classified and briefly described, and heat transfer enhancement technologies, namely dispersion of low‐density materials, use of porous materials, metal matrices and encapsulation, incorporation of extended surfaces and fins, utilisation of heat pipes, cascaded storage, and direct heat transfer techniques, are also discussed in detail. Additionally, a two‐dimensional heat transfer simulation model of an LHS system is developed using the control volume technique to solve the phase change problem. Furthermore, a three‐dimensional numerical simulation model of an LHS is built to investigate the quasi‐steady state and transient heat transfer in PCMs. Finally, several future research directions are provided.  相似文献   

19.
An analytical solution of a latent heat storage unit (LHSU) consisting of a shell-and tube was obtained by using the Exponential Integral Function and the variables separation technique. The working fluid (water) circulating by forced convection inside the inner tube charges and discharges the storage unit. The comparison between analytical predictions and experimental data shows good agreement. Extensive parametric studies were conducted in order to examine the effect of the pertinent parameters (such as natural convection, mass flow rate of HTF, outer tube radius, pipe length etc.) on the melting and solidification processes of paraffin as a PCM. In order to provide guidelines for system performance and design optimisation, unsteady temperature distributions within PCM during melting/solidification, energy stored, position of moving interface and thermal efficiency have been obtained by a series of numerical calculations and represented graphically.  相似文献   

20.
Low temperature latent heat thermal energy storage: Heat storage materials   总被引:6,自引:0,他引:6  
A. Abhat 《Solar Energy》1983,30(4):313-332
Heat-of-fusion storage materials for low temperature latent heat storage in the temperature range 0–120°C are reviewed. Organic and inorganic heat storage materials classified as paraffins, fatty acids, inorganic salt hydrates and eutectic compounds are considered. The melting and freezing behaviour of the various substances is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry. The importance of thermal cycling tests for establishing the long-term stability of the storage materials is discussed. Finally, some data pertaining to the corrosion compatibility of heat-of-fusion substances with conventional materials of construction is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号