首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to accomplish the multilinear model decomposition of MIMO nonlinear processes with multiple scheduling variables, a systematic division algorithm based on gap metric together with a supporting dichotomy gridding algorithm is proposed by using the gap metric as a measuring tool. For a prescribed distance level, this gap metric based division algorithm effectively decomposes a MIMO nonlinear system into a set of linear subsystems which provide enough model information for multilinear model-based controller design without linear model redundancy. Based on the linear models, a set of linear MPC controllers are designed and combined into a global controller for setpoint tracking control. Two benchmark nonlinear processes are studied to demonstrate the effectiveness of the proposed method.  相似文献   

2.
A novel approach to progress improvement of the economic performance in model predictive control (MPC) systems is developed. The conventional LQG based economic performance design provides an estimation which cannot be done by the controller while the proposed approach can develop the design performance achievable by the controller. Its optimal performance is achieved by solving economic performance design (EPD) problem and optimizing the MPC performance iteratively in contrast to the original EPD which has nonlinear LQG curve relationship. Based on the current operating data from MPC, EPD is transformed into a linear programming problem. With the iterative learning control (ILC) strategy, EPD is solved at each trial to update the tuning parameter and the designed condition; then MPC is conducted in the condition guided by EPD. The ILC strategy is proposed to adjust the tuning parameter based on the sensitivity analysis. The convergence of EPD by the proposed ILC has also been proved. The strategy can be applied to industry processes to keep enhancing the performance and to obtain the achievable optimal EPD. The performance of the proposed method is illustrated via an SISO numerical system as well as an MIMO industry process.  相似文献   

3.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

4.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

5.
A novel back-propagation AutoRegressive with eXternal input (BP-ARX) combination model is constructed for model predictive control (MPC) of MIMO nonlinear systems, whose steady-state relation between inputs and outputs can be obtained. The BP neural network represents the steady-state relation, and the ARX model represents the linear dynamic relation between inputs and outputs of the nonlinear systems. The BP-ARX model is a global model and is identified offline, while the parameters of the ARX model are rescaled online according to BP neural network and operating data. Sequential quadratic programming is employed to solve the quadratic objective function online, and a shift coefficient is defined to constrain the effect time of the recursive least-squares algorithm. Thus, a parameter varying nonlinear MPC (PVNMPC) algorithm that responds quickly to large changes in system set-points and shows good dynamic performance when system outputs approach set-points is proposed. Simulation results in a multivariable stirred tank and a multivariable pH neutralisation process illustrate the applicability of the proposed method and comparisons of the control effect between PVNMPC and multivariable recursive generalised predictive controller are also performed.  相似文献   

6.
This paper details a multiple model adaptive control strategy for model predictive control (MPC). To maintain performance of this linear controller over a wide range of operating levels, a multiple model adaptive control strategy for dynamic matrix control (DMC), the process industry's standard for MPC, is presented. The method of approach is to design multiple linear DMC controllers. The tuning parameters for the linear controllers are obtained using novel analytical expressions. The controller output of the adaptive DMC controller is a weighted average of the multiple linear DMC controllers. The capabilities of the multiple model adaptive strategy for DMC are investigated through computer simulations and an experimental system.  相似文献   

7.
Fuzzy model predictive control   总被引:1,自引:0,他引:1  
A fuzzy model predictive control (FMPC) approach is introduced to design a control system for a highly nonlinear process. In this approach, a process system is described by a fuzzy convolution model that consists of a number of quasi-linear fuzzy implications. In controller design, prediction errors and control energy are minimized through a two-layered iterative optimization process. At the lower layer, optimal local control policies are identified to minimize prediction errors in each subsystem. A near optimum is then identified through coordinating the subsystems to reach an overall minimum prediction error at the upper layer. The two-layered computing scheme avoids extensive online nonlinear optimization and permits the design of a controller based on linear control theory. The efficacy of the FMPC approach is demonstrated through three examples  相似文献   

8.
A minimum variance performance map is introduced for constrained linear model predictive control (MPC). The minimum variance performance map provides a demonstration of the effect of constraints in an MPC on the best achievable controller performance. The constrained minimum variance controller is formulated for the MPC system to be monitored. Using multi-parametric quadratic programming (mp-QP), the linear, piecewise control law is obtained for the constrained minimum variance controller. The linear, piecewise control law is used with a Kalman filter to obtain the minimum output variance in each region of the state space partition. The minimum variance performance map is demonstrated on a second order process with a constraint on the input amplitude.  相似文献   

9.
An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems with unknown steady state. First, the nonlinear system is identified off-line by RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization model and a polytopic uncertain linear parameter-varying (LPV) model are built to approximate the present and the future system's nonlinear behavior, respectively. Subsequently, based on the approximate models, a min–max robust MPC algorithm with input constraint is designed for the output-tracking control of the nonlinear system with unknown steady state. The closed-loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and the feasibility of the linear matrix inequalities (LMIs). Simulation study to a NOx decomposition process illustrates the effectiveness of the modeling and robust MPC approaches proposed in this paper.  相似文献   

10.
In this paper, a synthesis of model predictive control (MPC) algorithm is presented for uncertain systems subject to structured time‐varying uncertainties and actuator saturation. The system matrices are not exactly known, but are affine functions of a time varying parameter vector. To deal with the nonlinear actuator saturation, a saturated linear feedback control law is expressed into a convex hull of a group of auxiliary linear feedback laws. At each time instant, a state feedback law is designed to ensure the robust stability of the closed‐loop system. The robust MPC controller design problem is formulated into solving a minimization problem of a worst‐case performance index with respect to model uncertainties. The design of controller is then cast into solving a feasibility of linear matrix inequality (LMI) optimization problem. Then, the result is further extended to saturation dependent robust MPC approach by introducing additional variables. A saturation dependent quadratic function is used to reduce the conservatism of controller design. To show the effectiveness, the proposed robust MPC algorithms are applied to a continuous‐time stirred tank reactor (CSTR) process.  相似文献   

11.
A novel tuning strategy based on RPN for MIMO MPC is presented. The RPN indicates how potentially difficult it is for a given system to achieve the desired performance robustly. It reflects both the attainable performance of a system and its degree of directionality. These system's properties are the basis of the proposed RPN-MPC tuning strategy, which is applied in the controller design of an air separation plant and a CSTR with the Van de Vusse's reaction. Although it was only used a linear nominal model, the results can also be applied at least at some extent for nonlinear systems with uncertainties.  相似文献   

12.
A predictive control strategy for vehicle platoons is presented in this paper, accommodating both string stability and constraints (e.g., physical and safety) satisfaction. In the proposed design procedure, the two objectives are achieved by matching a model predictive controller (MPC), enforcing constraints satisfaction, with a linear controller designed to guarantee string stability. The proposed approach neatly combines the straightforward design of a string stable controller in the frequency domain, where a considerable number of approaches have been proposed in literature, with the capability of an MPC-based controller enforcing state and input constraints.A controller obtained with the proposed design procedure is validated both in simulations and in the field test, showing how string stability and constraints satisfaction can be simultaneously achieved with a single controller. The operating region that the MPC controller is string stable is characterized by the interior of feasible set of the MPC controller.  相似文献   

13.
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.

In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations.  相似文献   


14.
Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.  相似文献   

15.
For constrained piecewise linear (PWL) systems, the possible existing model uncertainty will bring the difficulties to the design approaches of model predictive control (MPC) based on mixed integer programming (MIP). This paper combines the robust method and hybrid method to design the MPC for PWL systems with structured uncertainty. For the proposed approach, as the system model is known at current time, a free control move is optimized to be the current control input. Meanwhile, the MPC controller uses a sequence of feedback control laws as the future control actions, where each feedback control law in the sequence corresponds to each partitions and the arbitrary switching technique is adopted to tackle all the possible switching. Furthermore, to reduce the online computational burden of MPC, the segmented design procedure is suggested by utilizing the characteristics of the proposed approach. Then, an offline design algorithm is proposed, and the reserved degree of freedom can be online used to optimize the control input with lower computational burden.  相似文献   

16.
This study introduces a fuzzy control design method for nonlinear systems with a guaranteed H model reference tracking performance. First, the Takagi and Sugeno (TS) fuzzy model is employed to represent a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based fuzzy controller is developed to reduce the tracking error as small as possible for all bounded reference inputs. The advantage of proposed tracking control design is that only a simple fuzzy controller is used in our approach without feedback linearization technique and complicated adaptive scheme. By the proposed method, the fuzzy tracking control design problem is parameterized in terms of a linear matrix inequality problem (LMIP). The LMIP can be solved very efficiently using the convex optimization techniques. Simulation example is given to illustrate the design procedures and tracking performance of the proposed method  相似文献   

17.
The model of adaptive hinging hyperplanes (AHH) is used in model predictive control (MPC). The nonlinear dynamic system is approximated by the continuous piecewise affine (CPWA) model AHH and the controller design problem becomes a continuous piecewise quadratic programming. The necessary and sufficient conditions for a point to be locally optimal for such a problem are established, based on which, a descent algorithm is developed to find a local optimum. Issues concerning feasibility and stability are also discussed. Simulations are conducted to confirm the effectiveness of the proposed MPC strategy.  相似文献   

18.
This paper presents a switching fuzzy controller design for a class of nonlinear systems. A switching fuzzy model is employed to represent the dynamics of a nonlinear system. In our previous papers, we proposed the switching fuzzy model and a switching Lyapunov function and derived stability conditions for open-loop systems. In this paper, we design a switching fuzzy controller. We firstly show that switching fuzzy controller design conditions based on the switching Lyapunov function are given in terms of bilinear matrix inequalities, which is difficult to design the controller numerically. Then, we propose a new controller design approach utilizing an augmented system. By introducing the augmented system which consists of the switching fuzzy model and a stable linear system, the controller design conditions based on the switching Lyapunov function are given in terms of linear matrix inequalities (LMIs). Therefore, we can effectively design the switching fuzzy controller via LMI-based approach. A design example illustrates the utility of this approach. Moreover, we show that the approach proposed in this paper is available in the research area of piecewise linear control.  相似文献   

19.
This paper proposes a controller design approach that integrates RTO and MPC for the control of constrained uncertain nonlinear systems. Assuming that the economic function is a known function of constrained system’s states, parameterized by unknown parameters and time-varying, the controller design objective is to simultaneously identify and regulate the system to the optimal operating point. The approach relies on a novel set-based parameter estimation routine and a robust model predictive controller that takes into the effect of parameter estimation errors. A simulation example is used to demonstrate the effectiveness of the design technique.  相似文献   

20.
This study introduces a fuzzy linear control design method for nonlinear systems with optimal H robustness performance. First, the Takagi and Sugeno fuzzy linear model (1985) is employed to approximate a nonlinear system. Next, based on the fuzzy linear model, a fuzzy controller is developed to stabilize the nonlinear system, and at the same time the effect of external disturbance on control performance is attenuated to a minimum level. Thus based on the fuzzy linear model, H performance design can be achieved in nonlinear control systems. In the proposed fuzzy linear control method, the fuzzy linear model provides rough control to approximate the nonlinear control system, while the H scheme provides precise control to achieve the optimal robustness performance. Linear matrix inequality (LMI) techniques are employed to solve this robust fuzzy control problem. In the case that state variables are unavailable, a fuzzy observer-based H control is also proposed to achieve a robust optimization design for nonlinear systems. A simulation example is given to illustrate the performance of the proposed design method  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号