首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of three pathogens Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli O157:H7 that were inoculated in fish roe salad and aubergine salad with or without preservatives after being adapted in acid environment or not, was determined. The salads were stored at 10  ° C and the pathogens population was counted at regular intervals. Parameters (lag time, death rates calculated with Baranyi equation) were used to compare the behaviour of the pathogens. In the absence of preservatives the pathogens survived during the 15 days of storage. A 1 log reduction was observed for Listeria and 2 logs reduction for Salmonella and E. coli in both salads. In most cases, acid adaptation decreased the death rate even in the presence of preservatives. The addition of sorbic and benzoic acid in the salads increased the death rate of the pathogens during storage significantly and they were not detected at 7–10 days for Salmonella , 8–12 days for Listeria and 5 days for E. coli . It is concluded that a well-studied combination of hurdles is appropriate to ensure safety of home-made traditional salads free of preservatives.  相似文献   

2.
《Food microbiology》2003,20(2):169-177
The objective of the present study was to investigate survival of acid-adapted and non-adapted E. coli O157:H7 inoculated after drying on beef jerky that was treated with marinades before drying. Beef slices were not marinated before drying (control—C), or subjected to the following marinades (24 h, 4°C) prior to drying at 60°C for 10 h: (1) traditional marinade (TM), (2) double the amount of TM modified with added 1.2% sodium lactate, 9% acetic acid, and 68% soy sauce with 5% ethanol) (MM), (3) dipping into 5% acetic acid followed by TM (AATM), and (4) dipping into 1% Tween 20 and then into 5% acetic acid followed by the TM (TWTM). Dried slices were inoculated with acid-adapted or non-adapted E. coli O157:H7 (c. 6.2 log cfu cm−2) prior to aerobic storage at 25°C for 60 days. Survivors were determined using tryptic soy agar with 0.1% pyruvate, modified eosin methlylene blue agar, and sorbitol MacConkey agar. Results indicated that bacterial populations decreased during storage in the order of predrying marinade treatments TWTM⩾AATM>MM>C⩾TM. Populations decreased faster on jerky inoculated with acid-adapted cultures than with non-adapted cultures in all treatments. A 5.0 log reduction in bacterial counts was achieved within 7 days (TWTM and AATM) or never achieved during the 60 days storage period (C, TM). The earliest elimination (enrichment negative) of the pathogen occurred by 28 days (TWTM, ATTM and MM) in products inoculated with acid-adapted cultures and by 42 days (TWTM and AATM) in products inoculated with non-adapted cultures. It is concluded that under the conditions of this study, modified marinades and low water activity provide antimicrobial effects against possible post-processing contamination of beef jerky with E. coli O157:H7. Acid adaptation of cultures enhanced their inactivation during storage.  相似文献   

3.
The behaviour of Escherichia coli O157:H7 was studied during the manufacture and ripening of raw goat milk lactic cheeses. Cheese was manufactured from raw milk in the laboratory and inoculated with E. coli O157:H7 to a final concentration of 10, 100 and 1000 cfu ml(-1). E. coli O157:H7 was counted by CT-SMAC (Mac Conkey Sorbitol Agar with cefixim and tellurite) and O157:H7 ID throughout the manufacturing and ripening processes. When the milk was inoculated with 10, 100 or 1000 cfu ml(-1), counts decreased to less than 1 log(10) g(-1) in curds just prior to moulding. However, viable E. coli O157:H7 were found in cheeses throughout processing, and even after 42 days of ripening. Results indicate that E. coli O157:H7 survives the lactic cheese manufacturing process. Thus, the presence of low numbers of E. coli O157:H7 in milk destined for the production of raw milk lactic cheeses can constitute a threat to the consumer.  相似文献   

4.
建立了一种快速检测原料乳中大肠杆菌O157:H7的PCR技术.该方法利用过滤富集菌体后的PCR技术来检测原料乳中大肠杆菌O157:H7,先对人工污染大肠杆菌O157:H7的原料乳进行离心脱脂,然后添加EDTA-2Na获得澄清乳液,最后通过0.45 μm微膜过滤收集菌体,整个过程只需6 h左右即可完成.检测灵敏度高达10-mL-1.这种方法在传统检测方法的基础上做了有效改进,使得原料乳中的大肠杆菌O157:H7的检测能够快速、准确、灵敏的进行.  相似文献   

5.
The effects of lactic acid, acetic acid, and acidic calcium sulfate (ACS) on viability and subsequent acid tolerance of three strains of Escherichia coli O157:H7 were determined. Differences in tolerance to acidic environments were observed among strains, but the level of tolerance was not affected by the acidulant to which cells had been exposed. Cells of E. coli O157:H7 adapted to grow on tryptic soy agar acidified to pH 4.5 with ACS were compared to cells grown at pH 7.2 in the absence of ACS for their ability to survive after inoculation into ground beef treated with ACS, as well as untreated beef. The number of ACS-adapted cells recovered from ACS-treated beef was significantly (alpha = 0.05) higher than the number of control cells recovered from ACS-treated beef during the first 3 days of a 10-day storage period at 4 degrees C, suggesting that ACS-adapted cells might be initially more tolerant than unadapted cells to reduced pH in ACS-treated beef. Regardless of treatment of ground beef with ACS or adaptation of E. coli O157:H7 to ACS before inoculating ground beef, the pathogen survived in high numbers.  相似文献   

6.
The heat resistance of stationary-phase and acid-adapted Escherichia coli O157:H7, Salmonella enterica (serotypes Typhimurium, Enteritidis, Gaminara, Rubislaw, and Hartford), and Listeria monocytogenes was evaluated in single-strength apple. orange, and white grape juices adjusted to pH 3.9. The heat resistance increased significantly (P < 0.05) after acid adaptation. Salmonella had an overall lower heat resistance than the other pathogens. Acid-adapted E. coli O157:H7 presented the highest heat resistance in all juices at the temperatures tested, with lower z-values than Salmonella and L. monocytogenes. The heat resistance (D(60 degrees C)-values) of all three pathogens, assessed in tryptic soy broth adjusted to different pH values, increased above pH 4.0. From the results obtained in this study, one example of a treatment that will inactivate 5 logs of vegetative pathogens was calculated as 3 s at 71.1 degrees C (z-value of 5.3 degrees C). Normal processing conditions calculated for hot-filled, shelf-stable juices achieve a lethality in excess of 50,000 D for all three pathogens.  相似文献   

7.
8.
A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain EO139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37 degrees C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of < or =5.4, < or =4.5, < or =4.2, or < or =4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P< or =0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.  相似文献   

9.
目的建立一种免疫磁分离(immunomagnetic separation,IMS)方法高效富集大肠杆菌O157:H7。方法合成一种核壳型的纳米磁珠(magnetic nanobeads, MNBs),并基于制备的MNBs构建了IMS。通过优化制备免疫MNBs时抗体浓度, IMS过程免疫MNBs的用量和孵育时间,构建了高效的IMS方法。结果构建的IMS方法能够在35 min内完成牛奶中大肠杆菌O157:H7的高效富集,当大肠杆菌O157:H7浓度低于10~5 CFU/m L时,捕获效率高于93.4%,当菌浓度达到10~7CFU/mL,捕获效率仍大于50%。结论该方法简单高效,可被广泛应用于其他食源性致病菌检测的样品前处理。  相似文献   

10.
为推动O15 7:H7致病机制的深入研究 ,介绍了近年来对EHECO15 7:H7的基因组和特异性大质粒pO15 7上与细菌致病性有关的主要致病因子的研究进展。  相似文献   

11.
Heat treatment is increasingly being introduced to fermented meat processing, since the acid tolerance properties of Escherichia coli O157:H7 can permit this organism to survive traditional processing procedures. This study investigated the effect of growth pH and fermentation on the thermotolerance at 55 degrees C of E. coli O157:H7 in a model fermented meat system. E. coli O157:H7 (strain 380-94) was grown at pH 5.6 or 7.4 (18 h at 37 degrees C), fermented to pH 4.8 or 4.4 in brain heart infusion broth, and stored for 96 h. Cells grown at pH 5.6 had higher D values at 55 degrees C (D55 degrees C) than cells grown at pH 7.4 (P < 0.001). Cells fermented to pH 4.8 had higher D55 degrees C than those fermented to pH 4.4 (P < 0.001). Cells fermented to pH 4.8 demonstrated an increase in D55 degrees C during storage (P < 0.001), whereas cells fermented to pH 4.4 showed a decrease in D55 degrees C during the same period (P < 0.001). The effect of growth pH on verotoxin production by E. coli O157:H7 was assessed using the verotoxin assay. Cells grown at pH 5.6 had lower verotoxin production then cells grown at pH 7.4. This effect was not sustained over storage. These results indicate that a lower growth pH can confer cross-protection against heat. This has implications for the production of acidic foods, such as fermented meat, during which a heating step may be used to improve product safety.  相似文献   

12.
The survival parameters of Escherichia coli O157:H7 during milk fermentation (carried out by the LIM or “longer incubation method” at 30 °C, or by the SIM or “short incubation method” at 43 °C) and storage of home-made yoghurt at refrigeration temperatures (2, 4, or 8 °C) were studied. The E. coli O157:H7 counts increased slightly during fermentation by the LIM, from 5.1 to 5.4 log cfu mL−1, and it was not found after 21 d of storage at 2 or 4 °C, and after 10 d at 8 °C. The microorganism counts increased from 4.8 to 5.4 log cfu mL−1 during the SIM, and it was not detected after 7 d stored at 8 °C. The microorganism grew faster at 43 °C (generation time=0.93 h) than at 30 °C (4.12 h) during the fermentation period. The death time decreased with the increase of the storage temperature (from 38.1 h at 2 °C to 30.1 h at 8 °C) in the yoghurt produced by fermentation at 30 °C; however, a clear relationship between death time and storage temperature was not evident at 43 °C. The pH values of the yoghurt ranged from 4.0 to 4.7.  相似文献   

13.
The pathogen Escherichia coli O157:H7 has been recovered from various water sources and food samples. The growth potential of this bacterium in nutrient-limited, reconditioned wastewater from a pork-processing plant was determined over a temperature range of 4 to 46 degrees C. Even though the biological oxygen demand of the wastewater was <2 mg/liter, results of bioassays for assimilable organic carbon and the coliform growth response of the water suggested that sufficient nutrients were present to support limited bacterial growth. A three-strain mixture of E. coli O157:H7 grew over the temperature range of 10.2 to 29.4 degrees C. Bioassays appear to be a good indicator of the ability of this wastewater to support growth of this pathogen. Statistically higher levels of bacterial growth (P < 0.05) were detected on a nonselective medium (tryptic soy agar) than on a selective medium (sorbitol-MacConkey agar), suggesting that stress or injury of the bacterium occurs when the organism is exposed to the nutrient-limited conditions of the wastewater. These results indicate that E. coli O157:H7 can survive and grow in this particular nutrient-limited wastewater, suggesting a potential hazard if this water becomes contaminated with this pathogen.  相似文献   

14.
The data collected from studies to monitor inactivation of Escherichia coli O157:H7 in uncooked fermented salami were used to develop models to describe survival of the organism. Three models were developed that included different variables to best describe E. coli O157:H7 reduction. Model A included the variables water activity (a(w)), pH, time, and quadratic variables pH and time. Model B separated the processing stages into fermentation and drying. The fermentation included the variables pH and temperature x time (ttarea) and interaction between the two variables. The drying stage was modeled using the variables time and a(w) and interaction between the two. Model C looked at variables a(w) and the time at pH 5.3 to achieve a 2-D log reduction of E. coli O157:H7 and the interaction between the variables. The variables selected for inclusion in all the models were significant at the P < 0.0001 level. The predicted values for all models correlated well to the observed values with R2 of 0.888, 0.828, 0.836, and 0.818 for models A. Bferm, Bdrying, and C, respectively. The models were validated using data from a trial not used to develop the model. In general the predicted reduction in E. coli O157:H7 count in uncooked fermented salami was greater than for the observed E. coli O157:H7 log reductions for all models, but the relation between the two was linear. The results demonstrate that modeling can be a useful tool in assessing manufacturing practices for uncooked fermented salami processes.  相似文献   

15.
A fluorescently labeled oligonucleotide probe (molecular beacon) was applied to detect Escherichia coli O157:H7 in artificially contaminated skim milk during polymerase chain reaction (PCR) amplification of extracted DNA. The probe was designed to hybridize with a region of the slt-II gene coding for the A subunit and to fluoresce when the hairpin-stem conformation was linearized upon hybridization to the target sequence. The molecular beacon was incorporated into PCR reactions containing DNA extracted from artificially contaminated skim milk. The degree of fluorescence was monitored in PCR reactions containing 10(3), 10(5), and 10(7) CFU of E. coli O157:H7 per ml and was found to correlate with the amount of template in each reaction. Fluorescence significantly increased above background levels by cycle 8, 14, or 14 in reactions containing DNA from the 10(7)-, 10(5)-, or 10(3)-CFU/ml template, respectively (P < 0.05). Molecular beacon PCR demonstrated positive results more rapidly than traditional agarose gel electrophoresis analysis of PCR products. Use of molecular beacons allows real-time monitoring of PCR reactions, and the closed-tube format allows simultaneous detection and confirmation of target amplicons without the need for agarose gel electrophoresis and/or Southern blotting. This is the first report of a stem-and-loop molecular beacon being applied for direct detection of a pathogen in food.  相似文献   

16.
This study assessed the acid tolerance response (ATR) of stationary phase, acid-adapted (tryptic soy broth [TSB]+1% glucose) or nonacid-adapted (glucose-free TSB) Escherichia coli O157:H7 strains (ATCC43889, ATCC43895, ATCC51658 and EO139), grown individually or in a mixed culture, prior to inoculation of beef or meat decontamination runoff (washings) fluids (acidic [pH 4.95] or nonacidic [pH 7.01]). The inoculated beef was left untreated or treated by dipping for 30s in hot water (75 degrees C) followed by 2% lactic acid (55 degrees C). Inoculated beef samples and washings were stored aerobically at 4 or 15 degrees C for 6d, and at set intervals (0, 2, and 6d) were exposed (for 0, 60, 120, and 180min) to pH 3.5 (adjusted with lactic acid) TSB plus 0.6% yeast extract. Overall, there were no significant (P0.05) differences in responses of cultures prepared as individual or mixed strains. Decontamination of meat did not affect the subsequent ATR of E. coli O157:H7 other than resulting in lower initial pathogen levels exposed to acidic conditions. In this study, E. coli O157:H7 appeared to become more tolerant to acid following incubation in acidic washings of sublethal pH (4.89-5.22) compared to nonacidic washings (pH 6.97-7.41) at 4 degrees C or in both types of washings incubated at 15 degrees C. The ATR of the pathogen inoculated into washings was enhanced when cells were previously acid-adapted and incubated at 4 degrees C. Similarly, the ATR on meat was increased by previous acid-adaptation of the inoculum in broth and enhanced by storage at 4 degrees C. Populations on treated meat were consistently lower than those on untreated meat during storage and following exposure to acid. Although on day-0 there were no significant (P0.05) differences in ATR between acid-adapted and nonacid-adapted populations on meat, acid-adapted cells displayed consistently higher resistance through day-6. This suggests that acid-adapted E. coli O157:H7 introduced on meat may become resistant to subsequent lactic acid exposure following storage at 4 degrees C.  相似文献   

17.
This study evaluated survival/growth of acid-adapted or nonadapted Escherichia coli O157:H7 inoculated (4 log CFU/wound) in wounds (10 mm deepx6 mm diameter) of apples. Wounds were inoculated with a green fluorescent protein (GFP)-expressing derivative of a rifampicin-resistant strain of E. coli O157:H7 ATCC 43895 and allowed to attach (1 h). Apples were dipped (2 min) in solutions (approximately 25 degrees C) of water (W), 5% acetic acid (AA), 5% hydrogen peroxide (HP), 0.02% sodium hypochlorite (SH), or not treated (NT), and stored at 25 degrees C. Survivors were determined in cores (10-mm deep) of the apple wounds (12 mm from center of wound; inner core) and surrounding tissue (18 mm from center of wound; outer core) after homogenizing the samples in Dey-Engley (D/E) neutralizing broth and plating on tryptic soy agar (TSA) and TSA supplemented with 100 microg/ml rifampicin (35 degrees C, 48 h) after 0, 2 and 5 days. Average bacterial populations at day-0 were 4.0 and 2.0 logs in the inner and outer core, respectively. In the inner core of the untreated apples populations increased to 7.0 logs at day-2, while counts did not exceed 3.0 logs in the outer core during storage of all treatments. Previous acid-adaptation of the cultures did not affect survival of the pathogen. Dipping in W, AA and SH did not reduce initial bacterial populations, while at day-2 of storage inner core counts from W, AA and SH reached 7.1, 5.5 and 6.9 logs, respectively. In contrast, HP reduced initial counts in the inner core by approximately 1.5 logs, but they increased to 7.0 logs by day-2. Populations of all treatments reached 6.6-7.2 logs in the inner core by day-5. Thus, sanitizer treatment did not effectively reduce nor inhibit growth of E. coli O157:H7 contamination in apple wounds and surrounding tissue.  相似文献   

18.
Escherichia coli O157:H7 and its significance in foods   总被引:17,自引:0,他引:17  
Escherichia coli O157:H7 was conclusively identified as a pathogen in 1982 following its association with two food-related outbreaks of an unusual gastrointestinal illness. The organism is now recognized as an important cause of foodborne disease, with outbreaks reported in the U.S.A., Canada, and the United Kingdom. Illness is generally quite severe, and can include three different syndromes, i.e., hemorrhagic colitis, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Most outbreaks have been associated with eating undercooked ground beef or, less frequently, drinking raw milk. Surveys of retail raw meats and poultry revealed E. coli O157:H7 in 1.5 to 3.5% of ground beef, pork, poultry, and lamb. Dairy cattle, especially young animals, have been identified as a reservoir. The organism is typical of most E. coli, but does possess distinguishing characteristics. For example, E. coli O157:H7 does not ferment sorbitol within 24 h, does not possess beta-glucuronidase activity, and does not grow well or at all at 44-45.5 degrees C. The organism has no unusual heat resistance; heating ground beef sufficiently to kill typical strains of salmonellae will also kill E. coli O157:H7. The mechanism of pathogenicity has not been fully elucidated, but clinical isolates produce one or more verotoxins which are believed to be important virulence factors. Little is known about the significance of pre-formed verotoxins in foods. The use of proper hygienic practices in handling foods of animal origin and proper heating of such foods before consumption are important control measures for the prevention of E. coli O157:H7 infections.  相似文献   

19.
A study was carried out in the Castilla y León region of Spain to investigate the presence of Escherichia coli O157:H7 in raw ewe's milk samples collected from several cheese factories during 1 year. All specimens were examined for E. coli O157:H7 by selective enrichment at 41.5 +/- 1.0 degrees C, after both 6 and 22 h of incubation, and then immunomagnetically separated and plated on cefixime-potassium tellurite-sorbitol MacConkey agar. No growth was obtained in the enrichment broth after a 6-h incubation. Presumptive colonies obtained after 22 h of incubation were screened by a multiplex PCR assay for the presence of rfbO157 and fliCH7 genes. Of all the ewe's milk samples studied, three were positive for E. coli O157:H7. The E. coli O157:H7 strains that were positive for the rfbO157 and fliCH7 genes were then analyzed by multiplex PCR for the presence of virulence genes (stx1, stx2, ehxA, and eaeA). All E. coli O157:H7 isolates were Shiga toxigenic and harbored additional genes related to virulence (ehxA and eaeA). The predominant Stx toxin type was stx2. These results demonstrate that raw ewe's milk used in cheesemaking may be sporadically contaminated with E. coli O157:H7 strains that are potentially pathogenic for humans.  相似文献   

20.
Internalization potential, survival, and growth of human pathogens within oranges were investigated in a series of laboratory experiments. Submerging oranges into dye solutions at various temperature differentials was used to assess internalization potential. Conditions in which dye internalization was observed were further studied by applying Escherichia coli O157:H7 or Salmonella onto the stem scar, subjecting the oranges to a temperature differential, juicing, and measuring numbers of pathogens in the resulting juice. Pathogens for growth and survival studies were applied to or injected into simulated peel punctures. Oranges with small peel holes of selected sizes were also placed into solutions containing these pathogens. Bacterial survival was also evaluated in orange juice at 4 and 24 degrees C. Oranges internalized pathogens at a frequency of 2.5 to 3.0%, which mirrored dye internalization frequency (3.3%). Pathogens were internalized at an uptake level of 0.1 to 0.01% of the challenge applied. Bacteria grew within oranges at 24 degrees C, but not at 4 degrees C. Thirty-one percent of oranges with 0.91-mm surface holes showed pathogen uptake, whereas 2% of oranges with 0.68-mm holes showed pathogen uptake. Pathogens added to fresh orange juice and incubated at 24 degrees C declined 1 log CFU/ml within 3 days. These results suggest that internalization, survival, and growth of human bacterial pathogens can occur within oranges intended for producing unpasteurized juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号