首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated energy system coupled with wind turbines and an on-site hydrogen refueling station is proposed to simulate the future scenario, which can meet the demands of cooling, heating, power and hydrogen. The system was modeled to calculate the capacity and annual operation of each equipment with the total annual cost as the optimization objective. This study evaluates the performance of the system based on the results. When the system is configured with 0–10 wind turbines, the economics, energy consumption and carbon emissions improve as the scale of wind turbines increases. Energy utilization and wind power utilization are above 66.79% and 99.73%, respectively. The on-off coefficient of the power generation unit can affect energy efficiency. When the system contains 5 turbines, 91% of the hydrogen can be self-produced with the minimum amount of energy redundancy.  相似文献   

2.
高寒地区百分百可再生能源住宅的可行性分析   总被引:3,自引:0,他引:3  
唐汝宁 《太阳能学报》2002,23(3):340-343
充分利用高寒地区自然资源的优势,将地源热泵技术与被动式太阳房技术,太阳能光电转换技术,几力发电等技术综合利用,对利用百分之百可再生能源满足民用会计室采暖,日常生活用能的可能性进行理论分析和论证,结果表明,高寒地区住宅用能源实现百分百可再生能源是完全可能的。  相似文献   

3.
Whilst net zero energy homes are espoused in many policy circles, and many bespoke examples have been constructed to demonstrate their technical feasibility, there is a scarcity of evidence demonstrating such a standard would be economically rational, particularly for large scale housing development where orientation and aspect may not always be optimal. Drawing on energy monitoring evidence and construction economics associated with a nearly zero energy housing estate in Adelaide, Australia, this paper explores the economic feasibility of the net zero energy home policy in warm temperate climates. The results demonstrate that using economic tools and assumptions typically applied for building energy regulatory policy changes, net societal economic benefits significantly outweigh costs. The clear economic outcomes, combined with expected health and productivity benefits from improved levels of thermal comfort, should provide security to policy makers to progress home energy standards towards net zero energy performance.  相似文献   

4.
There has long been a need for a practical method of predicting the true cost of heating a house with solar energy and designing the heating system (solar and auxiliary) to achieve the minimum total annual heating cost possible under the particular climatic, geographic, and residential characteristics involved. Rough approximations based on various types of averaged values of weather and seasonal variables have previously been developed, but the reliability of such methods and results is open to question. The authors have therefore made a rigorous analysis of projected solar heating costs in eight U.S. cities and have optimized the heating system design in each location.The analysis involved the use of a high speed computer and approximately 400,000 hourly observations in eight cities of radiation, temperature, wind, solar altitude, cloud cover, and humidity. Equations for performance of flat plate solar collectors and sensible heat storage systems were developed and programmed with the above weather variables and with eight design parameters comprising house size, collector size, storage size, collector tilt, number of transparent surfaces in collector, hot water demand, insulation on storage unit, and thermal capacity of collector. Capital and operating costs were quantitatively related to heating system design parameters, and the values of all design variables which yielded lowest annual heating cost in each city were then selected.The findings are presented in the form of two tables and ten graphs, showing heating costs as functions of various design and location factors. The relative importance of each factor is discussed, and the overall costs of solar heating are compared with the costs of conventional heat supply in each location. The method for designing the least-cost combination of solar and conventional heat supplies is also shown, and an example of the use of the method is presented.  相似文献   

5.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   

6.
Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.  相似文献   

7.
The size of solar water heating systems is assessed by three different economic criteria, life cycle savings, payback time and internal rate of return. The thermal load is calculated by the well-known f-chart method. Economic conditions as applied to Germany are assumed. The study is performed for three different climate conditions. It is also pointed out that the economics of a solar collector system can substantially be affected by the annual distribution of monthly water consumption and of monthly efficiency factors of converting fuel into useful energy.  相似文献   

8.
Jack W. Reed 《Energy》1979,4(5):811-822
Wind Energy Conversion Systems (WECS) are solar systems because the sun drives the atmospheric circulation. About 20 TW of wind energy flows poleward annually, over land in temperate latitudes, in the 500 m deep atmospheric boundary layer. An average 500 GW of electricity could be generated by massive exploitation of the U.S. Great Plains wind field.There are, however, large fluctuations in available wind power. There are frequent 20% variations in annual supply; annual periodicity brings most wind power during the spring; there are storm cycles; and there is a diurnal cycle. Gusts and turbulence also require filtering to meet normal power requirements. Several schemes are evolving to tame this erratic wind power supply.Modern technology is refining horizontal-axis turbines of a wide size range. Progress is also being made toward producing an economical vertical-axis turbine. Standards for turbine performance evaluation and installation site selection are now being developed. Yet it will be a few years before proven systems can significantly affect national energy supplies.Eventually, mass-produced WECS may cost $1000 per installed, rated kW, but the wind does not often flow at turbine-rated speed. With some storage or filtering, problems with wind variability may be overcome. Then WECS electricity production may be as economical as other electric generators. No serious hazards or environmental impacts should slow WECS development.  相似文献   

9.
In this study, two wind-solar-based polygeneration systems namely CES-1 and CES-2 are developed, modeled, and analyzed thermodynamically. CES-1 hybridizes a heliostat based CSP system with wind turbines while CES-2 integrates heliostat-based CPVT with wind turbines. This study aims to compare the production and thermodynamics performance of two heliostat based concentrated solar power technologies when hybridized with wind turbines. The systems have been modeled to produce, freshwater, hot water, electricity, hydrogen, and cooling with different cycles/subsystems. While the overall objective of the study is to model two polygeneration systems with improved energy and exergy performances, the performances of two solar technologies are compared. The wind turbine system integrated with the comprehensive energy systems will produce 1.14 MW of electricity and it has 72.2% energy and exergy efficiency. Also, based on the same solar energy input, the performance of the heliostat integrated CPVT system (CES-2) is found to be better than that of the CSP based system (CES-1). The polygeneration thermal and exergy efficiencies for the two systems respectively are 48.08% and 31.67% for CES-1; 59.7% and 43.91% for CES-2. Also, the electric power produced by CES-2 is 280 kW higher in comparison to CES-1.  相似文献   

10.
The expansion of renewable energy is a central element of the German Federal Government's climate and energy policy. The target for 2020 is to produce 30% of the electricity from renewable energies. Wind power has been selected to be a major contributor to this change. Replacing old wind turbines by modern ones and building new turbines on land will be crucial in meeting this target. However, the expansion of onshore wind power is not universally accepted. In several regions of Germany residents are protesting against setting up new wind turbines. To determine the negative effects two choice experiments were applied in Westsachsen and Nordhessen, Germany. In both regions the externalities of wind power generation until 2020 based on today's state of technology were measured. The results show that negative landscape externalities would result from expanding wind power generation. Using latent class models three different groups of respondents experiencing different degrees of externalities were identified.  相似文献   

11.
利用热力学方法建立太阳能烟囱发电系统中集热棚、烟囱及风力透平的热气流能量转换过程的理论模型及求解方法.鉴于太阳能烟囱发电站的大尺寸特征,采用一维假设建立热气流传热模型,使用龙格-库塔方法对非线性能量方程进行数值求解.对集热棚直径3 600 m,烟囱高950 m,设计功率100 MW的大型太阳能烟囱发电站进行分析与计算,给出了该电站的风力透平轴功率随质量流量和太阳辐射强度变化的规律,为风力透平机组提供热力气动设计参数,为大规模开发利用太阳能提供借鉴.  相似文献   

12.
Climate change, pollution, and energy insecurity are among the greatest problems of our time. Addressing them requires major changes in our energy infrastructure. Here, we analyze the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS). In Part I, we discuss WWS energy system characteristics, current and future energy demand, availability of WWS resources, numbers of WWS devices, and area and material requirements. In Part II, we address variability, economics, and policy of WWS energy. We estimate that ∼3,800,000 5 MW wind turbines, ∼49,000 300 MW concentrated solar plants, ∼40,000 300 MW solar PV power plants, ∼1.7 billion 3 kW rooftop PV systems, ∼5350 100 MW geothermal power plants, ∼270 new 1300 MW hydroelectric power plants, ∼720,000 0.75 MW wave devices, and ∼490,000 1 MW tidal turbines can power a 2030 WWS world that uses electricity and electrolytic hydrogen for all purposes. Such a WWS infrastructure reduces world power demand by 30% and requires only ∼0.41% and ∼0.59% more of the world's land for footprint and spacing, respectively. We suggest producing all new energy with WWS by 2030 and replacing the pre-existing energy by 2050. Barriers to the plan are primarily social and political, not technological or economic. The energy cost in a WWS world should be similar to that today.  相似文献   

13.
Renewable resources gained more attention in the last two decades due to persisting energy demand coupled with decrease in fossil fuel resources and its environmental effect to the earth. In Iraq, the electric power generated is not enough to meet the power demand of domestic and industrial sectors. In this article, a hybrid system was proposed as a renewable resource of power generation for grid connected applications in three cities in Iraq. The proposed system was simulated using MATLAB solver, in which the input parameters for the solver were the meteorological data for the selected locations and the sizes of PV and wind turbines. Results showed that it is possible for Iraq to use the solar and wind energy to generate enough power for some villages in the desert or rural area. It is also possible to use such a system as a black start source of power during total shutdown time. Results also indicated that the preferred location for this system is in Basrah for both solar and wind energy.  相似文献   

14.
This paper presents a method, implemented as a freely available computer programme, which is used to estimate the economics of renewable microgeneration of electricity from wind and solar energy sources. A variety of commercial small wind turbines and photovoltaic (PV) panels are considered and combined with raw energy data gathered from a variety of locations. Both residential and holiday home user profiles are available and options are selectable concerning feed-in tariffs (if available), government incentive schemes and the cost of capital borrowing. The configuration of the generation setup, which can consist of wind, PV and combination of wind/PV, is fully selectable by the user, with a range of appropriate default data provided. A numerical example, based on Irish data, is presented, which suggests that payback periods for solar and wind microgeneration systems can vary greatly (2.5–500 years), depending on the location, installation and economic variables.  相似文献   

15.
Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values.  相似文献   

16.
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.  相似文献   

17.
This paper provides fundamental principles to study the thermodynamic performance of a new screw expander–based solar thermal electricity plant. While steam turbines are generally used in direct steam generation solar systems without admitting fluid in two-phase conditions, steam screw expanders, as volumetric machines, can convert thermal to mechanical energy also by expanding liquid-steam mixtures without a decline in efficiency. In effect, steam turbines are not as competitive as screw expanders when the net power is smaller than 2 MW and for low-grade heat sources. The solar electricity generation system proposed in this paper is based on the steam Rankine cycle: Water is used as both working fluid and storage, parabolic trough collectors are used as a thermal source, and screw expanders are used as power machines. Since screw expanders can operate at off-design working conditions in several situations when installed in direct steam generation solar plants, studying expander performance under fluctuating working situations is a crucial issue. The main aim of the present paper is to establish a thermodynamic model to study the energetic benefits of the proposed power system when off-design operating conditions and variable solar radiation occur. This entails, first and foremost, developing overexpansion and underexpansion numerical models to describe the polytropic expansion phase, which considers all the losses affecting performance of the screw expander under real operating conditions. To assess the best operating conditions and maximum efficiency of the whole power system at part-load working conditions under fluctuating solar radiations, parametric optimization is then improved in a wide range of variable working conditions, assuming condensation pressures of water increasing from 0.1 to 1 bar, under an evaporation temperature rising from 170°C to 300°C.  相似文献   

18.
Climate change can affect the economy via many different channels in many different sectors. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling demand in the residential and services sector, changes in the efficiency of thermal power plants, and changes in hydro, wind (both on- and off-shore) and solar PV electricity output. Results of the impacts of six scenarios on the European energy system are presented, and the implications for European energy security and energy imports are presented.Main findings include: demand side impacts (heating and cooling in the residential and services sector) are larger than supply side impacts; power generation from fossil-fuel and nuclear sources decreases and renewable energy increases; and impacts are larger in Southern Europe than in Northern Europe.There remain many more climate change impacts on the energy sector that cannot currently be captured due to a variety of issues including: lack of climate data, difficulties translating climate data into energy-system-relevant data, lack of detail in energy system models where climate impacts act. This paper does not attempt to provide an exhaustive analysis of climate change impacts in the energy sector, it is rather another step towards an increasing coverage of possible impacts.  相似文献   

19.
An identification and preliminary evaluation was made of alternative advanced electric power systems which have been suggested for possible future use by the American electric utility industry. The motivation for interest in advanced power systems stems primarily from the rapidly rising costs of clean fossil fuels, especially conventional fuel oil, and uncertainties of fuel supply. Four basic energy sources have been identified for prospective future American utility applications; namely, coal, nuclear, solar and geothermal. Each source must generally be subjected to extensive preprocessing before thermal energy can be delivered in a form useful to an electric power conversion system. Numerous candidate advanced energy conversion systems can be matched to the various energy sources, including steam, open cycle gas turbines, combined cycles, closed cycle gas turbines, MHD, fuel cells, liquid metal topping, supercritical carbon dioxide topping and others. Each has advantages and disadvantages which can be ranked and weighted numerically, based on our present knowledge. A tentative selection of promising combinations of energy sources and conversion systems has been made to focus attention on those which satisfy the socio-political requirements and also offer potential profit opportunities for suppliers to the electric utility industry.  相似文献   

20.
Meta-analysis of net energy return for wind power systems   总被引:1,自引:0,他引:1  
This analysis reviews and synthesizes the literature on the net energy return for electric power generation by wind turbines. Energy return on investment (EROI) is the ratio of energy delivered to energy costs. We examine 119 wind turbines from 50 different analyses, ranging in publication date from 1977 to 2007. We extend on previous work by including additional and more recent analyses, distinguishing between important assumptions about system boundaries and methodological approaches, and viewing the EROI as function of power rating. Our survey shows an average EROI for all studies (operational and conceptual) of 25.2 (n = 114; std. dev = 22.3). The average EROI for just the operational studies is 19.8 (n = 60; std. dev = 13.7). This places wind in a favorable position relative to fossil fuels, nuclear, and solar power generation technologies in terms of EROI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号