首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of whey protein concentrate (WPC) on the formation of soluble protein complexes and yoghurt texture were evaluated. Skim milk (SM) and skim milk enriched with 1% WPC (SM + 1%WPC) or 2% WPC (SM + 2%WPC) were left unheated or heated and then made into yoghurt gels. Yoghurt prepared from heated SM + 2%WPC had significantly higher storage modulus, water holding capacity and firmness values and a denser microstructure than those prepared only from skim milk. Electrophoretic analysis of the milk showed that the level of β-lactoglobulin and κ-casein in the serum phase increased with increasing WPC concentration, indicating that the content of disulfide-linked β-lactoglobulin and κ-casein was higher in SM + 2%WPC than in SM, suggesting that more soluble protein complexes had been formed. Consequently, yoghurt prepared from heated SM enriched with WPC may have more bonds and more protein complexes in the protein network than yoghurt prepared only from SM, thus resulting in firmer gels.Practical applicationsYoghurt, one of the most popular fermented milk products, is of high economic importance to the dairy industry worldwide. In particular, high-protein yoghurt, such as Greek-style or set-type yoghurt, has been driving its ongoing popularity over recent years. In current industrial production of high-protein yoghurt, protein fortification and heat treatment of milk are two of the most important processing parameters affecting yoghurt texture. Whey protein concentrate has been added to milk to reduce whey separation and to increase the firmness of the yoghurt. From a technological point of view, the interaction of the denatured whey proteins with casein micelles or with κ-casein in the serum phases is regarded as responsible for obtaining a good yoghurt structure. The present research has shown that it is possible to produce yoghurt with a range of textural properties by precisely controlling the rate of whey protein fortification during its manufacture. Therefore, this study provides a better understanding of the effect of WPC fortification and aims to extend this insight for the production of good-quality yoghurt.  相似文献   

2.
The effects of microfluidisation of milk at different pressures, prior to heat treatment, on structural and sensory properties of low-fat stirred yoghurt, were investigated. Low-fat yoghurts prepared from microfluidised milk were compared with low-fat (1.5%) and full-fat (3.5%) control yoghurts made with homogenised (20/5 MPa) milk. The microstructure of low-fat yoghurts prepared with microfluidised milk consisted of smaller and more uniform fat globules, well incorporated into more interconnected fat-protein gel networks, compared with those of control yoghurts. This modification in microstructure caused significant changes in gel particle size, sensory profile and rheological behaviour. Microfluidisation increased the gel particle size, gel strength and viscosity; marked beneficial effects were found at higher pressures (50–150 MPa). Microfluidising milk at 50–150 MPa increased the gel strength by 171–195% and viscosity by 98–103%, creating low-fat yoghurts with creaminess and desirable texture properties similar to, or better than, full-fat conventional yoghurt.  相似文献   

3.
Physical properties of stirred yoghurt made from reconstituted skim milk that was high-pressure (HP)-treated at 100, 250 or 400 MPa, at 25, 70 or 90 °C, for 10 min, prior to inoculation with yoghurt cultures, were studied; portions of milk HP-treated at 25 °C were also heat-treated at 90 °C for 10 min before or after pressure treatment. Control yoghurts were made from skim milk given a heat treatment at 90 °C for 10 min. Fermentation time was not affected by treatment applied to the milk. HP treatment of skim milk at 25 °C, before or after heat treatment, gave stirred yoghurts of similar viscosities to that made from conventionally heat-treated milk. Lower viscosities were obtained when stirred yoghurts were made with milk HP-treated at elevated temperatures. A model is proposed to correlate properties of yoghurt with HP/heat-induced changes in interactions and structures of protein in the milk samples.Industrial relevanceTo meet end user expectations, the dairy industry needs to diversify its product range by tailoring specific functionalities. To meet these expectations, new processing methods such as high-pressure processing are of interest for their potential to achieve specific and/or novel functionalities and/or improve efficiencies, including reduced chemical and water use. In this paper, an investigation of the use simultaneous pressurization and heating of milk before the manufacture of stirred yoghurt is presented.  相似文献   

4.
The aim of this work was to study how heat treatment and casein (CN) to whey protein (WP) ratio of skim milk affect physical characteristics of stirred yoghurt. Different heat treatments (95 °C/256 s, 110 °C/180 s and 130 °C/80 s) were applied to the yoghurt milk with the CN to WP ratios of 1.5:1, 2:1, 3:1 and 4:1. Physical properties, including graininess and roughness, of stirred yoghurt were determined during storage at 4 °C for 15 days. Visual roughness, number of grains, perimeter of grains, storage modulus, and yield stress decreased, when heating temperature or CN to WP ratio increased.  相似文献   

5.
《International Dairy Journal》2005,15(10):1006-1016
The viscoelastic properties of acid milk gels containing small amounts of different fats were investigated. Skim milk was reconstituted from ultra low-heat skim milk powder and emulsions made with 2% (v/v) sunflower oil, olive oil, groundnut oil, or anhydrous milk fat using a pressure homogenizer. Acidification at 20 °C for 14 h to pH ∼4.6 was achieved by adding glucono-δ-lactone to the emulsion. Stress relaxation testing enabled determination of the firmness and the solid-like properties, i.e., elasticity. Regardless of the physical state of the fat, emulsion gels exhibited higher firmness than fat-free gels, despite the low fat level used. The firmness of the gels containing this small quantity of fat was more sensitive to temperature than was the firmness of fat-free gels. The relaxation time was higher in the presence of fat crystals. Modifications in the rheological properties of gels containing fat were attributed to fat droplets acting as active filler particles.  相似文献   

6.
《Food Hydrocolloids》2006,20(2-3):314-324
This study investigated firmness and syneresis of set yoghurts made at the CN to WP ratios of 4:1, 3:1, 2:1 and 1:1 using non-EPS-, capsular EPS- and ropy EPS-producing starter cultures. The yoghurts were made at 9 and 14% (w/w) total solids. The total solids, total protein, the concentration of lactose and the ratios of CN to WP as well as the protein's profiles (native- polyacrylamide gel electrophoresis) in heated and unheated milk blends were investigated. The level of soluble denatured whey protein aggregates in heated milk was also determined. The concentration of EPS, firmness and level of spontaneous syneresis in set yoghurt were monitored weekly throughout 28 days of storage. The microstructure of the set yoghurt made with milk blends at the CN to WP ratio of 4:1 and using three types of starter cultures was carried out after 1 day of storage. There was no difference in the total solids, total protein and lactose concentration of liquid milk blends, except the CN to WP ratios. There was no difference in whey protein denaturation between milk blends. The level of soluble denatured whey protein aggregates in heated milk blends decreased with reducing CN to WP ratio. The firmness and the level of spontaneous syneresis in set yoghurts decreased as the CN to WP ratios were reduced. The use of EPS-producing starter cultures reduced firmness and syneresis and changed the protein matrix in the microstructure of set yoghurts made at 9% (w/w) total solids compared to the control products. These were not observed in set yoghurts made at 14% (w/w) total solids.  相似文献   

7.
The aim of this work was to study how heat treatment, the type of starter culture, incubation temperature, and storage time can affect the physicochemical characteristics of stirred yoghurt. A four-factor experimental design was used for data analysis. Yoghurt milk was heated at 95 °C for 5 min or 130 °C for 80 s. Yoghurts were produced with three different starter cultures that had been incubated at 37, 42 or 45 °C and stored at 4 °C for 15 days. Visual roughness, number of grains, perimeter of grains, storage modulus, and yield stress all decreased when heating temperature was increased, when an exopolysaccharide-producing starter culture was used, or when incubation temperature was decreased. Storage time did not affect any of the physicochemical properties of yoghurt, except for the pH.  相似文献   

8.
Experimentally prepared Jerusalem artichoke inulins (JAI) were compared with two commercial chicory root inulins for their prebiotic potentials in media broth model and growth-sustaining ability in non-fat yoghurts. Experimental yoghurts were made with 12% reconstituted skim milk (RSM) supplemented with 4% inulin powders, inoculated with mixed cultures of Lactobacillus casei LC-01, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (1:0.5:0.5 based on supplier’s recommendation) and incubated overnight at 37 °C. Non-supplemented yoghurt was prepared from 16% RSM and used as control. The survival and acidifying activity of lactic and probiotic cultures in all yoghurts were investigated on weekly intervals during the shelf life of 28 days at 4 °C. Incorporation of JAI resulted in improved viability of LC-01, maintaining >7.0 log CFU/g during cold storage but did not affect the viability of yoghurt bacteria in comparison with the control.  相似文献   

9.
Volatile carbonyl compounds, organic acids and yoghurt bacteria counts were investigated in yoghurts made from ultra-high pressure homogenized milk. Yoghurts were manufactured from milk treated using ultra-high pressure homogenization at 200 or 300 MPa and at 30 °C or 40 °C, and compared with those produced from heat-treated milk with 3% added skim milk powder. To study the evolution of these parameters, samples were analysed after days 1, 14 and 28 of storage. Yoghurts from milk heat-treated or treated at 300 MPa had very similar profiles of organic acids and volatile compounds, as well as similar bacterial counts of both starter cultures. In comparison, yoghurts from milk treated at 200 MPa at either 30 °C or 40 °C gave different profiles, together with a sharp decrease in counts of lactobacilli. During storage, only slight differences in flavour compounds and yoghurt bacteria counts were detected, except in those samples from milk treated at 200 MPa.  相似文献   

10.
The quality of plain stirred yoghurt produced from whole milk with somatic cell counts (SCC) at low (147,000 cells mL−1), intermediate (434,000 cells mL−1) and high (1,943,000 cells mL−1) levels was examined. Each milk treatment was obtained from selected cows, according to its SCC status and milk composition. Yoghurt samples were analysed on days 1, 10, 20 and 30 after production. Analyses included pH, acidity, fat, lipolysis (expressed as free fatty acids, FFA), proteolysis and apparent viscosity. Viscosity of high SCC yoghurt was higher (P<0.05) than the low SCC yoghurt on days 10, 20 and 30 of storage. High SCC yoghurt also had higher FFA content (P<0.05). SCC did not affect pH, acidity, fat content and proteolysis of the yoghurt (P>0.05). Results indicate that SCC in milk increases the lipolysis in the resulting yoghurt during storage for 30 d.  相似文献   

11.
《Journal of dairy science》1986,69(10):2593-2603
Milk was processed by vat (85°C for 10 to 40 min), high temperature, short time (98°C for .5 to 1.87 min), and ultra-high temperature (140°C for 2 to 8 s) heating systems and made into yogurt. Yogurt firmness ranged from 90 to 104 g force for vat treatments, 74 to 96 g for high temperature, short time treatments, and 47 to 65 g for ultra-high temperature treatments. Planned contrasts between heating systems indicated significantly higher yogurt firmness and viscosity for vat versus high temperature, short time and ultra-high temperature systems. Yogurt from high temperature, short time milk showed the highest water-holding capacity, followed by ultra-high temperature and vat treatments. Correlation coefficient between yogurt firmness and whey protein denaturation was .83 and between apparent viscosity and whey protein denaturation was .89. Sensory evaluation indicated an overall preference for yogurt made from high temperature, short time (1.87 min) milk.  相似文献   

12.
Milk samples from 50 Holstein cows were tested monthly for 10 mo for total protein, casein, fat, somatic cells, and pH. A Formagraph was used to measure chymosin coagulation properties. Significant variations in coagulation time and curd firmness were observed in relation to period of lactation, individual cows, and milk pH. A high negative correlation coefficient (?.86) was observed between coagulation time and curd firmness measured 30 min after addition of chymosin. The mean coagulation time generally increased as lactation progressed and milk yield decreased. Curd firmness was generally greatest in midlactation samples.Milk from 38% of the cows did not coagulate in 30 min 1 mo prior to their dry periods. The frequency of failure to coagulate was 68% in winter and 32% in fall. Milk pH was the most significant factor that affected coagulation time and curd firmness. Simulated cheese making procedures were utilized to estimate recovery of fat and protein in curd. Curd yield calculated from the recovery data ranged from 5.4 to 14% with a mean of 9.2%.  相似文献   

13.
The objective of this study was to investigate the effects of whey protein denaturation and whey protein:casein-ratio on the structural, rheological and sensory properties of high protein (8% true protein), low fat (<0.5% fat) yoghurt. Yoghurt milk bases were made by adding undenatured whey proteins from native whey protein concentrate (NWPC) to casein concentrate in different whey protein:casein-ratios. The degree of whey protein denaturation was then controlled by the temperature treatment of the yoghurt milk bases. Addition of NWPC in low (whey protein:casein-ratio 25:75) or medium levels (whey protein:casein-ratio 35:65) in combination with heat treatment at 75 °C for 5 min gave yoghurts with significantly lower firmness, lower storage modulus (G′), and better sensory properties (less coarse and granular and more smooth), compared with corresponding yoghurts produced from yoghurt milk bases heat-treated at 95 °C for 5 min or with control yoghurts (no addition of NWPC).  相似文献   

14.
The effects of high-pressure homogenisation (HPH) of cows’ milk were investigated for suitability for yogurt manufacture, compared with the processes currently applied in industry. Milk at different inlet temperatures (30 °C or 40 °C) was subjected to HPH treatment at 100, 200 or 300 MPa (one stage) and 130, 230 or 330 MPa (two-stage). HPH-treated milk was compared with milk heat-treated (90 °C for 90 s) and homogenised at 15 MPa, and with milk treated under the same thermal conditions and also fortified with 3% skim milk powder. Milk treated at 300 or 200 MPa showed higher gel strengths on coagulation, higher gel firmness in texture analysis, less syneresis and lower titratable acidity compared with conventionally treated milk fortified with 3% skim milk powder.  相似文献   

15.
《Journal of dairy science》1986,69(4):945-950
Whole milk was ultrafiltered to approximately 4:1 protein concentration, heated to 85°C for 30 min, and cooled to 22°C. It was inoculated with a commercial frozen concentrated lactic starter to give approximately 107 cfu/ml and incubated at 22°C for 12 h. A commercial phage inhibitory medium and 11% nonfat dry milk were used as controls. After 12 h, retentate had significantly higher colony forming units per milliliter (3.2 × 109) and pH (5.21) than phage inhibitory medium (2.5 × 109 and pH 5.02) and nonfat dry milk (2.4 × 109 and pH 4.58). Retentate starter and phage inhibitory medium starter had equal activity in skim milk (.3% developed acidity in 4 h at 32°C) whereas nonfat dry milk starter had significantly lower activity (.26% developed acidity). After a further 8 h incubation at 22°C, retentate starter had the highest pH (4.95) compared with phage inhibitory medium (4.76) and nonfat dry milk (4.51). At this time retentate starter activity was higher (.3%) than phage inhibitory medium (.27%) and nonfat dry milk (.19%). In highly concentrated retentates (3.5:1 and 5:1), retentate starter lowered pH considerably quicker than nonfat dry milk starter.  相似文献   

16.
《Journal of dairy science》1986,69(7):1793-1798
Milk samples from 31 Holstein cows of different phenotypes for β-casein, κ-casein, and β-lactoglobulin were collected monthly over the entire lactation. These samples were analyzed for total solids, fat, protein, casein fractions, lactose, urea, citric acid, somatic cell count, and pH. Rennet clotting time, rate of firming, and curd firmness as measured by a Formagraph were not significantly influenced by phenotypes for β-casein and κ-casein. Phenotype AA for β-lactoglobulin gave the best clotting time (3.91 min) and firmness of curd (36.30 mm) when compared with AB and BB phenotypes. Relative percentages of the different caseins and α-lactalbumin affected significantly rate of firming and curd firmness at cutting. Amount of κ-casein in milk was the most significant factor that affected curd firmness with a coefficient of regression of 15.96.  相似文献   

17.
The survival parameters of Escherichia coli O157:H7 during milk fermentation (carried out by the LIM or “longer incubation method” at 30 °C, or by the SIM or “short incubation method” at 43 °C) and storage of home-made yoghurt at refrigeration temperatures (2, 4, or 8 °C) were studied. The E. coli O157:H7 counts increased slightly during fermentation by the LIM, from 5.1 to 5.4 log cfu mL−1, and it was not found after 21 d of storage at 2 or 4 °C, and after 10 d at 8 °C. The microorganism counts increased from 4.8 to 5.4 log cfu mL−1 during the SIM, and it was not detected after 7 d stored at 8 °C. The microorganism grew faster at 43 °C (generation time=0.93 h) than at 30 °C (4.12 h) during the fermentation period. The death time decreased with the increase of the storage temperature (from 38.1 h at 2 °C to 30.1 h at 8 °C) in the yoghurt produced by fermentation at 30 °C; however, a clear relationship between death time and storage temperature was not evident at 43 °C. The pH values of the yoghurt ranged from 4.0 to 4.7.  相似文献   

18.
《International Dairy Journal》2000,10(1-2):105-111
The effects of high pressure on the physicochemical, chemical, microbiological and sensory characteristics of stirred low-fat yoghurt were studied. Laboratory-made yoghurts were treated at high pressure (100–400 MPa) for 15 min at 20°C. No significant changes in pH and total organic acids were observed after pressuring the yoghurt. Pressures over 200 MPa prevented post-acidification of the yoghurt during chilled storage. Pressurized yoghurts exhibited higher viscosity and amino acid contents than did the untreated controls, and the differences were maintained after chilled storage. High-pressure treatments at 300 and 400 MPa reduced the number of viable cells of lactobacilli to below the legal minimum permitted in many countries. Significant differences in sensory characteristics between untreated and pressurized yoghurts (200–300 MPa) were detected after chilled storage.  相似文献   

19.
《Journal of dairy science》1988,71(7):1740-1746
Forty-two Holstein cows were selected to provide monthly milk samples with varying SCC for 1 yr. Coagulating properties of samples measured as rennet clotting time, rate of curd firming, and curd firmness at cutting were determined by a formagraph. Milk samples were analyzed for fat, protein, lactose, total solids, casein, individual caseins, urea, SCC, and pH. Least squares analyses of data, after adjustments were made for the effect of milk composition, indicated that elevated SCC were associated with a significant increase in rennet clotting time and slower rate of curd firming. An increase of SCC from 100,000 to 500,000 SCC/ml resulted in an increase of approximately 2.1 and 2.2% in RCT and K20, respectively. A further increase of SCC to above 1,000,000/ml resulted in an overall increase of 20.7 and 13.84% in RCT and K20, respectively. Regression analyses indicated that K20 was decreased by 5.42 min and curd firmness at cutting was increased by 12.92 mm for every percentage in milk casein. Rennet clotting time, rate of curd firming, and curd firmness at cutting were increased by 3.52, 3.41, min and decreased by 9.45 mm, respectively, for every unit increase in milk pH.  相似文献   

20.
The effect of raw milk quality (total and psychrotrophic bacterial and somatic cell counts, proteinase and plasmin activity) and UHT temperature (145 or 150 °C for 4 s) on proteolysis in UHT milk processed by a direct (steam-injection) system was investigated during storage at 25 °C for 180 d. High proteinase activity was measured in low-quality raw milk, which had high somatic cell count, bacterial count and plasmin activity. The levels of 12% trichloroacetic acid–soluble and pH 4.6-soluble nitrogen in all milk samples increased during storage, and samples produced from low-quality milk at the lower UHT temperature (145 °C) showed the highest values. Bitterness in UHT milk processed from low-quality milk at 145 °C increased during storage; gelation occurred in that milk after 150 d. The RP-HPLC profiles of pH 4.6-soluble fraction of the UHT milk samples produced at 150 °C showed quite small number of peaks after 180 d of storage. Sterilization at 150 °C extended the shelf-life of the UHT milk by reducing proteolysis, gelation and bitterness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号