首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because of biodegradability and nontoxicity biodiesel has become more attractive as alternative fuel. Biodiesel is produced mainly from vegetable oils by transesterification of triacylglycerols. From economic and social reasons, edible oils should be replaced by lower-cost and reliable feedstocks for biodiesel production such as non-edible plant oils. This paper reviews various methods for biodiesel production from common non-edible oils employing alcoholysis reactions. The aim of this paper is to present the possibilities of the use of non-edible oils into biodiesel production, to consider the various methods for treatment of non-edible oils and to emphasize the influence of the operating and reaction conditions on the process rate and the ester yield. The special attention is paid to the possibilities of optimization, kinetics and improvement of biodiesel production from non-edible oils.  相似文献   

2.
In view of the fast depletion of fossil fuel, the search for alternative fuels has become inevitable, looking at huge demand of diesel for transportation sector, captive power generation and agricultural sector, the biodiesel is being viewed a substitute of diesel. The vegetable oils, fats, grease are the source of feedstocks for the production of biodiesel. Significant work has been reported on the kinetics of transesterification of edible vegetable oils but little work is reported on non-edible oils. Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstocks for biodiesel production in India and limited work is reported on the kinetics of transesterification of high FFA containing oil. The present study reports a review of kinetics of biodiesel production. The paper also reveals the results of kinetics study of two-step acid–base catalyzed transesterification process carried out at pre-determined optimum temperature of 65 and 50 °C for esterification and transesterification process, respectively, under the optimum condition of methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H2SO4 and NaOH and 400 rpm of stirring. The yield of methyl ester (ME) has been used to study the effect of different parameters. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. This is the first study of its kind dealing with simplified kinetics of two-step acid–base catalyzed transesterification process carried at optimum temperature of both the steps which took about 6 h for complete conversion of TG to ME.  相似文献   

3.
The present study was appraised using response surface methodology for process optimization owing to strong interaction of reaction variables: NaOCH3 catalyst concentration (0.25–1.50%), methanol/oil molar ratio (3:1–9:1), reaction time (30–90 min), and reaction temperature (45–65°C). The quadratic polynomial equation was determined using response surface methodology for predicting optimum methyl esters yield from Cannabis sativa oil. The analysis of variance results indicated that molar ratio and reaction temperature were the key factors that appreciably influence the yield of Cannabis sativa oil methyl esters. The significant (p < 0.0001) variable interaction between molar ratio × catalyst concentration and reaction time × molar ratio was observed, which mostly affect the Cannabis sativa oil methyl esters yield. The optimum Cannabis sativa oil methyl esters yield, i.e., 86.01% was gained at 53°C reaction temperature, 7.5:1 methanol/oil molar ratio, 65 min reaction time, and 0.80% catalyst concentration. The results depicted a linear relationship between observed and predicted values. The residual analysis predicted the appropriateness of the central composite design. The Cannabis sativa oil methyl esters, analyzed by gas chromatography, elucidated six fatty acid methyl esters (linoleic, α-linolenic, oleic, palmitic, stearic, and γ-linolenic acids). In addition, the fuel properties, such as kinematic viscosity at 40°C; cetane number; acid value; flash point; cloud, pour, and cold filter plugging points; ash content; density; and sulphur content, of Cannabis sativa oil methyl esters were evaluated and discussed with reference to ASTM D 6751 and EU 14214 biodiesel specifications.  相似文献   

4.
This paper presents the study of the transesterification of palm oil via heterogeneous process using montmorillonite KSF as heterogeneous catalyst. This study was carried out using a design of experiment (DOE), specifically response surface methodology (RSM) based on four-variable central composite design (CCD) with α (alpha) = 2. The transesterification process variables were reaction temperature, x1 (50–190 °C), reaction period, x2 (60–300 min), methanol/oil ratio, x3 (4–12 mol mol?1) and amount of catalyst, x4 (1–5 wt%). It was found that the yield of palm oil fatty acid methyl esters (FAME) could reach up to 79.6% using the following reaction conditions: reaction temperature of 190 °C, reaction period at 180 min, ratio of methanol/oil at 8:1 mol mol?1 and amount of catalyst at 3%.  相似文献   

5.
Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality.  相似文献   

6.
This work was to study technical and economic feasibilities of converting residual oils recovered from spent bleaching earth generated at soybean oil refineries into useable biodiesel. Experimental results showed that fatty acids in the SBE residual oil were hexadecenoic acid (58.19%), stearic acid (21.49%) and oleic acid (20.32%), which were similar to those of vegetable oils. The methyl ester conversion via a transesterification process gave a yield between 85 and 90%. The biodiesel qualities were in reasonable agreement with both EN 14214 and ASTM D6751 standards. A preliminary financial analysis showed that the production cost of biodiesel from SBE oils was significantly lower than the pre-tax price of fossil diesel or those made of vegetable oils or waste cooking oils. The effects of the crude oil price and the investment on the production cost and the investment return period were also conducted. The result showed that the investment would return faster at higher crude oil price.  相似文献   

7.
The biodiesel (fatty acid methyl esters, FAME) was prepared by transesterification of the mixed oil (soybean oil and rapeseed oil) with sodium hydroxide (NaOH) as catalyst. The effects of mole ratio of methanol to oil, reaction temperature, catalyst amount and reaction time on the yield were studied. In order to decrease the operational temperature, a co-solvent (hexane) was added into the reactants and the conversion efficiency of the reaction was improved. The optimal reaction conditions were obtained by this experiment: methanol/oil mole ratio 5.0:1, reaction temperature 55 °C, catalyst amount 0.8 wt.% and reaction time 2.0 h. Under the optimum conditions, a 94% yield of methyl esters was reached ∼94%. The structure of the biodiesel was characterized by FT-IR spectroscopy. The sulfur content of biodiesel was determined by Inductively Coupled Plasma emission spectrometer (ICP), and the satisfied result was obtained. The properties of obtained biodiesel from mixed oil are close to commercial diesel fuel and is rated as a realistic fuel as an alternative to diesel. Production of biodiesel has positive impact on the utilization of agricultural and forestry products.  相似文献   

8.
Biodiesel production from waste cooking oil with methanol was carried out in the presence of poly(vinyl alcohol) with sulfonic acid groups (PVA-SO3H) and polystyrene with sulfonic acid groups (PS-SO3H), at 60°C. The PVA-SO3H catalyst showed higher catalytic activity than the PS-SO3H one. In order to optimize the reaction conditions, different parameters were studied. An increase of waste cooking oil conversion into fatty acid methyl esters with the amount of PVA-SO3H was observed. When the transesterification and esterification of WCO was carried out with ethanol over PVA-SO3H, at 60°C, a decrease of biodiesel production was also observed. The WCO conversion into fatty acid ethyl ester increased when the temperature was increased from 60 to 80°C. When different amounts of free fatty acids were added to the reaction mixture, a slight increase on the conversion was observed. The PVA-SO3H catalyst was reused and recycled with negligible loss in the activity.  相似文献   

9.
The increased demand for energy, climate change, and energy security concerns has driven the research interest for the development of alternative fuel from plant origin. Biodiesel derived from plant oils, which include edible and non-edible oil have gained interest for the last two decades as alternative for diesel around the world. Among these plant origin oils more than 95% of biodiesel production feedstocks come from edible oils, because they are readily available in many regions. The major advantage of these feedstocks is the properties of biodiesel produced from them are suitable to be used as diesel fuel substitute. But the consequence is the increase demand of the feedstock for food as well as fuel. A sustainable alternative fuel should be derived from renewable non-food biomass sources. The main objective of this review is to give an overview on the synthesis of biodiesel through esterification and transesterification using non-edible oil resources which are available in India, and available processes for synthesis of biodiesel (acid-, base-catalyzed transesterification reactions (homogeneous and heterogeneous), their importance, and which is the commercial process also discussed here.  相似文献   

10.
Biodiesel produced from oil-rich feedstocks is known as a green replacement for conventional petroleum diesel. Transesterification is the common method used for biodiesel production. Hence, in this contribution, neural network modeling and least square support vector machine (LSSVM) modeling were used to predict the transesterification of castor oil with methanol to form biodiesel. Also, genetic algorithm was used for the optimization of predictive model. Input and output parameter of predictive models for the prediction of biodiesel production yield and estimation of the efficiency of biodiesel production are catalyst weight (C), methanol-to-oil molar ratio (MOR), time (S), temperature (T), and fatty acid methyl ester (FAME) yield, respectively. Proposed LSSVM modeling predicts biodiesel production yield or FAME yield within ±2% relative deviation with a high value of coefficient of determination (0.99583) and a low value of absolute deviation (1.27) in which the mentioned statistical parameters represent the accuracy and robustness of the model.  相似文献   

11.
Biodiesel production by microalgal biotechnology   总被引:7,自引:0,他引:7  
Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed.  相似文献   

12.
In developing countries like India where 70% of country's petroleum needs are met by import, energy security assumes significance in view of uncertainty of supply and increasing price of petroleum fuels. Fuels of bio origin not only provide energy security, but also reduce emissions of harmful pollutants and greenhouse gases and ensure rural upliftment by increasing employment in agricultural sector. India cannot afford to produce biodiesel from edible oil seeds as it is done in the American and European countries. Extensive focus has been given on producing biodiesel from non-edible sources, specifically from Jatropha. Discrepancies between the expectation and realities regarding Jatropha as a feedstock necessitate efforts for diversification of the feedstocks. Scientific research should therefore be directed towards oilseeds like Karanja, Sal, Mahua, Neem, etc. that are widely available and sustainable to the diverse socio-economic and environmental conditions of rural India. Among them the evergreen neem with its wide availability and various useful uses may be a potential feedstock for biodiesel production. In this paper attempts have been made to overview the morphology of neem tree, various useful uses, physical and chemical characteristics of neem oil and optimized production process for biodiesel production from neem oil.  相似文献   

13.
Biodiesel production from crude rice bran oil and properties as fuel   总被引:1,自引:0,他引:1  
This research reported on the successfully production of biodiesel by transesterification of crude rice bran oil (RBO). The process included three-steps. Firstly, the acid value of RBO was reduced to below 1 mg KOH/g by two-steps pretreatment process in the presence of sulfuric acid catalyst. Secondly, the product prepared from the first process was carried out esterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/RBO molar ratio, catalyst amount, reaction temperature and reaction time, was studied at this stage. The content of methyl ester was analyzed by chromatographic analysis. Through orthogonal analysis of parameters in a four-factor and three-level test, the optimum reaction conditions for the transesterification were obtained: methanol/RBO molar ratio 6:1, usage amount of KOH 0.9% w/w, reaction temperature 60 °C and reaction time 60 min. In the third step, methyl ester prepared from the second processing step was refined to become biodiesel. Fuel properties of RBO biodiesel were studied and compared according to ASTM D6751-02 and DIN V51606 standards for biodiesel. Most fuel properties complied with the limits prescribed in the aforementioned standards. The consequent engine test showed a similar power output compared with regular diesel but consumption rate was slightly higher. Emission tests showed a marked decrease in CO, HC and PM, however, with a slight increase in NOX.  相似文献   

14.
In the present work, a new and pioneering hybrid technology, called hydrodynamic-cavitation reactor, was established and investigated to proof the feasibility for the biodiesel production from Chlorella minutissima microalgae. The process parameters such as inlet pressure (A), molar ratio (B), catalyst concentration (C), and reaction time (D) have been investigated over the biodiesel yield from Chlorella minutissima microalgae. Box–?Behnken design was applied to develop the second- order polynomial model. The error between experimental values and model prediction was found to be less than 10%. Interactive effects of process variables on the biodiesel yield from Chlorella minutissima microalgae was studied using contour graphs. Inlet pressure of 4 bar, molar ratio of 1: 30, catalyst concentration of 1.3%, and reaction time of 40 min produced 99% of biodiesel yield. Further, a kinetic model has also been developed and considers the transesterification reaction to be a second-order reversible, first order with respect to each of the reactants and products. Estimated values of kinetic constants are k1 = 0.00014 L min/mol and k2 = 0.035 L min/mol.  相似文献   

15.
The Brazilian National Program for Production and Use of Biodiesel (PNPB in Portuguese) has created a huge demand for biodiesel in Brazil. The PNPB is strongly based on social development through the inclusion of family farmers in projects integrated with biodiesel power plants. Among the various oilseeds, castor bean (Ricinus communis L.) was identified as the ideal one to promote social development in the semi-arid region. However, although promising, the mechanisms of the federal program are still insufficient to promote the effective participation of family farmers. This research shows that companies are facing huge problems in implementing contracts with family farmers. It describes and analyzes the functioning dynamics of this agro-production chain. This paper addresses the identification and the discussion of these obstacles, in order to increase the competitiveness of the biodiesel agribusiness chain, based on castor oil social projects in Brazil.  相似文献   

16.
Hydrogen is a promising alternative to fossil fuel for a source of clean energy due to its high energy content. Some strains of phototrophic microorganisms are known as important object of scientific research and they are being explored to raise biohydrogen (BioH2) yield. BioH2 is still not commonly used in industrial area because of the low biomass yield and valuable down streaming process. This article deals with the methods of the hydrogen production with the help of two large groups of phototrophic microorganisms – microalgae and cyanobacteria. Microalgal hydrogen is environmentally friendly alternative to conventional fossil fuels. Algal biomass has been considered as an attractive raw source for hydrogen production. Genetic modified strains of cyanobacteria are used as a perspective object for obtaining hydrogen. The modern photobioreactors and outdoor air systems have been used to obtain the biomass used for hydrogen production. At present time a variety of immobilization matrices and methods are being examined for their suitability to make immobilized H2 producers.  相似文献   

17.
In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 24 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 °C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production.  相似文献   

18.
This paper studied tri-basic potassium phosphate for transesterification process with degummed crude Jatropha curcas oil using constant-temperature, ultrasonic water bath generating low-intensity pulses with good energy distribution converting the maximum amount of biodiesel. Tri-basic potassium phosphate is suitable for J. curcas oil when the free fatty acid (FFA) content is less than 2%. The optimal reaction levels are catalyst 1.0 wt%, temperature of 50°C, and methanol-to-oil molar ratio of 12:1. The yield is 98% after 45 min, at 20 kHz frequency. The catalytic activity is found similar to potassium hydroxide and the catalyst solubility is only 4.27 ppm.  相似文献   

19.
An integrated, clean, facile and ecologically friendly approach of biodiesel production from Eruca Sativa Gars (ESG) vegetable oil focused on lab scaling up was reported in this study. Transesterification of ESG oil was heterogeneously catalyzed by Cs2.5H0.5PW12O40 heteropolyacid salt. The properties of biodiesel from ESG were comparable to conventional diesel fuel and comply with the US Standard for Biodiesel (ASTM 6751). Using ESG biodiesel instead of conventional diesel fuel reduces emissions. The results illustrate that the Cs2.5H0.5PW12O40 is an environmentally benign solid acid catalyst and ESG biodiesel is a kind of nontoxic and biodegradable renewable alternative fuel.  相似文献   

20.
Although biodiesel is a sustainable and renewable diesel fuel, the current feedstock predominantly from edible oils limits the economic feasibility of biodiesel production and thus the development of a cost-effective non-food feedstock is really essential. In this study, approximately 21.6% of crude grease was extracted from housefly (Musca domestica L.) larvae reared on swine manure, and the extracted grease was evaluated for biodiesel production concerning the variables affecting the yield of acid-catalyzed production of methyl esters and the properties of the housefly larvae-based biodiesel. The optimized process of 8:1 methanol/grease (mol/mol) with 2 vol% H2SO4 reacted at 70 °C for 2 h resulted in a 95.7% conversion rate from free fatty acid (FFA) into methyl esters. A 90.3% conversion rate of triglycerides (crude grease) to its esters was obtained from alkaline trans-esterification using sodium hydroxide as catalyst. The major fatty acid components of this larvae grease were palmitic (29.1%), oleic (23.3%), palmitoletic (17.4%) and linoleic (17.2%). The housefly larvae-based biodiesel has reached the ASTM D6751-10 standard in density (881 kg/m3), viscosity (5.64 mm2/s), ester content (96.8%), flash point (145 °C), and cetane number (52). These findings suggest that the grease derived from swine manure-grown housefly larvae can be a feasible non-food feedstock for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号