首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution, the identification problem for the control of nonlinear simulated moving bed (SMB) chromatographic processes is addressed. For process control the flow rates of extract, desorbent, and recycle of the SMB process, and the switching time are the manipulated variables. But these variables influence the process in a strongly coupled manner. Therefore, a new set of input variables is introduced by a nonlinear transformation of the physical inputs, such that the couplings are reduced considerably. The front positions of the axial concentration profile are taken as model outputs. Multilayer feedforward neural networks (NN) are utilized as approximating models of the nonlinear input–output behavior. The gradient distribution of the model outputs with respect to the inputs is used to determine their structural parameters and the network size is chosen by the SVD method. To illustrate the effectiveness of the identification method, a laboratory scale SMB process is used as an example. The simulation results of the identified model confirm a very good approximation of the first principles models and exhibit a satisfactory long-range prediction performance.  相似文献   

2.
This paper proposes a neural-based predictive control algorithm for online control of a force-acting industrial hydraulic actuator. In the algorithm, a multilayer feedforward neural network is employed to modeling the highly nonlinear hydraulic actuator. The nonlinear neural model is instantaneously linearized at each sampling point. Estimated parameters from the linearized model are used in the generalized predictive control (GPC) algorithm to control the contact force. Simulation and experimental results show that the neural-based predictive controller can adapt to different environments and keep the contact force in a desired value despite high nonlinearity and uncertainty in the hydraulic actuator system.  相似文献   

3.
In the present investigation, three different type of support vector machines (SVMs) tools such as least square SVM (LS-SVM), Spider SVM and SVM-KM and an artificial neural network (ANN) model were developed to estimate the surface roughness values of AISI 304 austenitic stainless steel in CNC turning operation. In the development of predictive models, turning parameters of cutting speed, feed rate and depth of cut were considered as model variables. For this purpose, a three-level full factorial design of experiments (DOE) method was used to collect surface roughness values. A feedforward neural network based on backpropagation algorithm was a multilayered architecture made up of 15 hidden neurons placed between input and output layers. The prediction results showed that the all used SVMs results were better than ANN with high correlations between the prediction and experimentally measured values.  相似文献   

4.
This paper discusses an industrial application of a multivariable nonlinear feedforward/feedback model predictive control where the model is given by a dynamic neural network. A multi-pass packed bed reactor temperature profile is modelled via recurrent neural networks using the backpropagation through time training algorithm. This model is then used in conjunction with an optimizer to build a nonlinear model predictive controller. Results show that, compared with conventional control schemes, the neural network model based controller can achieve tighter temperature control for disturbance rejection  相似文献   

5.
针对污水处理过程溶解氧(DO)浓度控制问题,提出了一种基于前馈神经网络的建模控制方法(FNNMC).本文构造了神经网络建模控制系统,通过对建模神经网络和控制神经网络隐含层学习率的分析,证明了学习算法的收敛性以及整个系统的稳定性.最后,本文基于国际基准的Benchmark Simulation Model No.1 (BSMl)进行了仿真实验,验证了合理选取学习率的重要性,并通过与PID和模型预测控制(MPC)等已有控制方法的比较,验证了神经网络建模控制方法针对污水处理过程溶解氧浓度控制具有良好的建模能力,更高的控制精度以及更好的动态响应能力.  相似文献   

6.
针对一类具有特殊模型的非线性系统本文提出了一种新型神经网络预测控制算法。该算法利用线性系统预测控制技术和神经网络的非线性映射及并行处理能力来求实际控制量,避免了解非线性方程和非线性预测控制所需的在线数值寻优计算,减少了计算量和计算时间。仿真结果表明了该算法的何效性。  相似文献   

7.
This study compares the multi-period predictive ability of linear ARIMA models to nonlinear time delay neural network models in water quality applications. Comparisons are made for a variety of artificially generated nonlinear ARIMA data sets that simulate the characteristics of wastewater process variables and watershed variables, as well as two real-world wastewater data sets. While the time delay neural network model was more accurate for the two real-world wastewater data sets, the neural networks were not always more accurate than linear ARIMA for the artificial nonlinear data sets. In some cases of the artificial nonlinear data, where multi-period predictions are made, the linear ARIMA model provides a more accurate result than the time delay neural network. This study suggests that researchers and practitioners should carefully consider the nature and intended use of water quality data if choosing between neural networks and other statistical methods for wastewater process control or watershed environmental quality management.  相似文献   

8.
Chemical processes are nonlinear. Model based control schemes such as model predictive control are highly related to the accuracy of the process model. For a highly nonlinear chemical system, it is clear to implement a nonlinear empirical model, such as artificial neural network model, should be superior to a linear model such as dynamic matrix model. However, unlike linear systems, the accuracy of a nonlinear empirical model strongly depends on its original data or training data based on how the model is built up. A regional-knowledge index is proposed in this study and applied in the analysis of dynamic artificial neural network models in process control. New input patterns that imply extrapolations and thus unreliable prediction by an artificial neural network model can be recognized from a significant decrease in the regional-knowledge index. To tackle the extrapolation problem and assure stability of the control system, we propose to run a neural adaptive controller in parallel with a model predictive control. A coordinator weights the outputs of these two controllers to make the final control decision. The present state of the controlled process and the model fitness to the present input pattern determine the weightings of the controller's output. The proposed analysis method and the modified model predictive control architecture have been applied to a neutralization process and excellent control performance is observed in this highly nonlinear system.  相似文献   

9.
循环神经网络建模在非线性预测控制中的应用   总被引:6,自引:0,他引:6  
古勇  苏宏业  褚健 《控制与决策》2000,15(2):254-256
基于动态Levenberg-Marquardt(LM)算法,提出两步LM方法建立非线性过程的循环神经网络模型。该模型以足够的精度并行于过程运行,并能从过程的输入信息模拟过程未来的响应。研究了基于该模型的扩展DMC预测控制策略,仿真结果表明该控制器的性能得到了很大提高。  相似文献   

10.
非线性系统多步预测控制的复合神经网络实现   总被引:11,自引:1,他引:10  
提出一种基于神经网络的非线性多步预测控制,采用由线性网络和动态递归神经网络构成的复合神经网络。在此基础上将线性系统的广义预测控制器扩展为非线性系统的多步预测控制器。通过对非线性过程CSTR的仿真表明,该方法的稳定性和鲁棒性明显优于线性DMC预测控制。  相似文献   

11.
A nonlinear one-step-ahead control strategy based on a neural network model is proposed for nonlinear SISO processes. The neural network used for controller design is a feedforward network with external recurrent terms. The training of the neural network model is implemented by using a recursive least-squares (RLS)-based algorithm. Considering the case of the nonlinear processes with time delay, the extension of the mentioned neural control scheme to d-step-ahead predictive neural control is proposed to compensate the influence of the time-delay. Then the stability analysis of the neural-network-based one-step-ahead control system is presented based on Lyapunov theory. From the stability investigation, the stability condition for the neural control system is obtained. The method is illustrated with some simulated examples, including the control of a continuous stirred tank reactor (CSTR).  相似文献   

12.
A neural network (NN)‐based robust adaptive control design scheme is developed for a class of nonlinear systems represented by input–output models with an unknown nonlinear function and unknown time delay. By approximating on‐line the unknown nonlinear functions with a three‐layer feedforward NN, the proposed approach does not require the unknown parameters to satisfy the linear dependence condition. The control law is delay independent and possible controller singularity problem is avoided. It is proved that with the proposed neural control law, all the signals in the closed‐loop system are semiglobally bounded in the presence of unknown time delay and unknown nonlinearity. A simulation example is presented to demonstrate the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.

The dynamics identification and subsequent control of a nonlinear system is not a trivial issue. The application of a neural gas network that is trained with a supervised batch version of the algorithm can produce identification models in a robust way. In this paper, the neural model identifies each local transfer function, demonstrating that the local linear approximation can be done. Moreover, other parameters are analyzed in order to obtain a correct modeling. Furthermore, the algorithm is applied to control a nonlinear multi-input multi-output system composed of tanks. In addition, this plant is a coupled system where the manipulated input variables are influencing all the output variables. The aim of the work is to demonstrate that the supervised neural gas algorithm is able to obtain linear models to be used in a state space design scenario to control nonlinear coupled systems and guarantee a robust control method. The results are compared with the common approach of using a recurrent neural controller trained with a dynamic backpropagation algorithm. Regarding the steady-state errors in disturbance rejection, reference tracking and sensitivity to simple process changes, the proposed approach shows an interesting application to control nonlinear plants.

  相似文献   

14.
Recently, twist extrusion has found extensive applications as a novel method of severe plastic deformation for grain refining of materials. In this paper, two prominent predictive models, response surface method and artificial neural network (ANN) are employed together with results of finite element simulation to model twist extrusion process. Twist angle, friction factor and ram speed are selected as input variables and imposed effective plastic strain, strain homogeneity and maximum punch force are considered as output parameters. Comparison between results shows that ANN outperforms response surface method in modeling twist extrusion process. In addition, statistical analysis of response surface shows that twist extrusion and friction factor have the most and ram speed has the least effect on output parameters at room temperature. Also, optimization of twist extrusion process was carried out by a combination of neural network model and multi-objective meta-heuristic optimization algorithms. For this reason, three prominent multi-objective algorithms, non-dominated sorting genetic algorithm, strength pareto evolutionary algorithm and multi-objective particle swarm optimization (MOPSO) were utilized. Results showed that MOPSO algorithm has relative superiority over other algorithms to find the optimal points.  相似文献   

15.
基于多层局部回归神经网络的多变量非线性系统预测控制   总被引:8,自引:0,他引:8  
以罐式搅拌反应器为例,针对复杂多变量系统的强耦合性、非线性、时变性等问题,研究了多变量非线性系统的预测控制及改善控制性能的方法,采用多层局部回归神经网络离线建立预测模型,以偏差补偿和模型修正相结合的方式对预测模型进行误差补偿,以要线校正用于预测控制,通过对性能指标中的偏差项负指数加权,进一步改善预测控制性能,住址结果表明了控制算法的有效性。  相似文献   

16.
A novel neural network based technique, called "data strip mining" extracts predictive models from data sets which have a large number of potential inputs and comparatively few data points. This methodology uses neural network sensitivity analysis to determine which predictors are most significant in the problem. Neural network sensitivity analysis holds all but one input to a trained neural network constant while varying each input over its entire range to determine its effect on the output. Elimination of variables through neural network sensitivity analysis and predicting performance through model cross-validation allows the analyst to reduce the number of inputs and improve the model's predictive ability at the same time. This paper demonstrates its effectiveness on a pair of problems from combinatorial chemistry with over 400 potential inputs each. For these data sets, model selection by neural sensitivity analysis outperformed other variable selection methods including the forward selection and genetic algorithm.  相似文献   

17.
This paper presents a comparison of predictive models for the estimation of engine power and tailpipe emissions for a 4 kW gasoline scooter. This study forms a benchmark toward establishing an online emissions control and monitoring system to bring the emissions to within specific limits. Three emissions predictive models were investigated in this study; direct and series artificial neural network (ANN) models and a MATLAB dynamic model. The direct models takes variables lambda, throttle position, engine and vehicle speed to predict the engine power and the emissions CO, CO2 and HC. The series model first takes the mentioned input to predict the engine power and consequently using the engine power as the fifth input to predict the emissions. For the ANN models, two multilayered networks were compared and analyzed; the backpropagation (BP) and optimization layer-by-layer (OLL) algorithms. The predictive accuracy for each algorithm were compared and it was found that the OLL network is the most accurate with a maximum mean relative error (MRE) of 1.78% and 1.38% for the direct and series predictive model respectively. Comparative results showed that the series neural network model gives the most accurate predictions, with MRE of 0.63% and 0.47% for the engine power and emissions respectively. The series neural network model can be seen as generic virtual power and emissions sensors, substituting costly and cumbersome hardware. Simple obtainable process parameters together with the series neural network will contribute immensely in control and tuning of emissions for real-time vehicular applications.  相似文献   

18.
This paper presents dynamic neural-network-based model-predictive control (MPC) structure for a baker's yeast drying process. Mathematical model consists of two partial nonlinear differential equations that are obtained from heat and mass balances inside dried granules. The drying curves that are obtained from granule-based model were used as training data for neural network (NN) models. The target is to predict the moisture content and product activity, which are very important parameters in drying process, for different horizon values. Genetic-based search algorithm determines the optimal drying profile by solving optimization problem in MPC. As a result of the performance evaluation of the proposed control structure, which is compared with the model based on nonlinear partial differential equation (PDE) and with feedforward neural network (FFN) models, it is particularly satisfactory for the drying process of a baker's yeast.   相似文献   

19.
基于神经网络非线性模型的扩展DMC预测控制   总被引:2,自引:0,他引:2  
刘军  赵霞  许晓鸣 《信息与控制》1998,27(5):391-393,400
利用前馈神经网络建立对象的非线性预测模型,用多级阶跃响应建立平均线性模型。  相似文献   

20.
基于核函数的支持向量机(support-vector-machines, SVM)与三层神经网络等价关系, 构造基于SVM的多变量阶时延逆系统实现对原系统的伪线性化解耦, 提出最近邻聚类的SVM模型辨识算法, 设计了一种带前馈的参数自适应PD调节器和SVM逆控制相结合的控制策略. 通过对典型的MIMO离散非线性可逆系统和电弧炉电极系统的仿真研究, 表明该控制策略对于数学模型未知的不确定系统, 只需要一定量的输入输出数据作为样本学习, 就可实现对系统逆模型的高精度逼近, 控制系统具有良好的动态响应和跟踪精度. 当模型严重不确定、参数摄动、有外界干扰时, 系统具有很好的抗干扰能力和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号