首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
汽车发动机排气废热的温差发电   总被引:13,自引:0,他引:13  
  相似文献   

2.
温差发电技术及其在汽车发动机排气余热利用中的应用   总被引:7,自引:0,他引:7  
介绍了采用半导体热电元件的温差发电技术的特征,包括对半导体材料的要求,适合作汽车排气余热发电的温差发电器的结构等,给出了美、日等国车用温差发电器的实例,还对相关技术的发展趋势作了分析。  相似文献   

3.
建立了半导体温差发电器件的基本模型,推导出器件等效导热系数的数学表达式,发现其与N型、P型半导体材料及两端陶瓷片的导热系数紧密相关,对半导体材料和陶瓷片的导热系数随温度的变化关系进行了实验研究并进行了数值拟合,绘制了器件等效导热系数与温度的曲线,得到的计算值与实验结果基本吻合。  相似文献   

4.
建立非均质温差发电器(TEG)理论模型,考虑热电材料的非均质导热系数以及温差发电器与热源间的传热热阻的影响,分析非均质温差发电器的一般性能.讨论热电元件对数、热导率、高温热源温度对非均质温差发电器性能特性的影响.结果表明,相较于均质温差发电器,导热系数不均匀强度越大,非均质温差发电器的最大输出功率和最大效率越高;热电元...  相似文献   

5.
浅谈温差发电   总被引:1,自引:0,他引:1  
阐述温差发电的原理,以及利用塞贝克效应进行温差发电的半导体温差发电、太阳能温差发电、同位素温差发电及原理不同的海洋温差发电;回顾国内外各类温差发电的研究进展及现状,并指出各类温差发电的应用前景。  相似文献   

6.
温差发电技术及其在节能领域的应用   总被引:7,自引:1,他引:7  
郑艺华  马永志 《节能技术》2006,24(2):142-146
温差发电技术是利用热电转换材料直接将热能转化为电能的发电技术,具有无运动部件、体积小、重量轻、移动方便和可靠性高等特点,是绿色环保的发电方式。随着能源与环境问题的日益突出,温差发电技术在节能领域的应用日新月异,它是合理利用太阳能、地热能、海洋温差、余热和废热等热能转换为电能的有效方式。  相似文献   

7.
《节能》2017,(11):23-26
通过实验的方式测量了热空气流量、温度和冷却风速对半导体温差发电器性能的影响。研究结果表明:随着热空气流量的增加,热端换热效果增强,使得集热器温度升高,进而冷热源温差增大,热电模块的开路电压增加。随着热空气温度的升高,集热器的温度同时也在升高,此时冷热源温差增大,热电模块的开路电压增加。随着冷却风风速的增加,冷端换热器的换热效果增强同时也影响热端集热器的温度。  相似文献   

8.
张景韶  李绍莲 《新能源》1996,18(9):11-16
本文报道以常见低温热源做能源,通过温差电技术使之转换为电能的技术途径及样机的研制,并通过对样机性能的测试对这种发电方式的社会与经济效益的初步分析评估。  相似文献   

9.
低温差下半导体温差发电器(火用)分析   总被引:1,自引:0,他引:1  
半导体温差发电器的性能通常用输出功率和工作效率来进行评价,但在低温差对低品位能的利用上,只用工作效率来评价是不全面的。从[火用]的角度对低温差下半导体温差发电器的工作性能进行了分析,提出了[火用]效率,用炯效率来作为低温差下半导体温差发电器的评价参数。实验结果表明,随着温差的减小,半导体温差发电器的工作效率明显下降,但[火用]效率则基本稳定。  相似文献   

10.
半导体温差电器件的低温余热发电   总被引:1,自引:0,他引:1  
高敏 Rowe  DM 《新能源》1992,14(7):10-16
  相似文献   

11.
热电转换技术在内燃机节能中的研究现状   总被引:1,自引:0,他引:1  
张征  陈特銮 《节能技术》2004,22(2):44-46
热电转换技术是当前研究的热点课题之一,涉及能源、热电学、材料学等领域。本文综述了热电转换技术在内燃机排气余热利用方面的研究现状,分析了发展趋势。  相似文献   

12.
白忠恺  韩东 《节能技术》2009,27(6):541-545
设计了一种回收工业转炉余热的半导体温差发电装置。针对转炉转动的特点,研究设计了风冷式的冷端结构。采用Fluent软件对温度分布及速度分布进行了数值模拟,并对计算结果进行了分析。结果表明,采用风扇顸部冲击冷却的形式可达到良好的效果,可使温差发电元件两端温差高达70℃,满足了半导体温差发电温差基本要求,该设计也满足自带风扇负载的要求。  相似文献   

13.
半导体温差发电技术在低品位余热回收技术领域具有重要的应用价值。汽车尾气温度高,带走的热量约占发动机总量的40%,温差发电技术能直接将废热能量转化为电能回收利用。介绍温差发电装置的设计原理,结构参数对性能影响以及装置输出性能参数,并结合试验对温差发电装置的传热性能和电功率输出性能进行分析以及提出有效的改进方案。  相似文献   

14.
为测量和改进温差发电装置的性能,建立了试验台架进行测试。通过台架试验及计算流体动力学软件分析,确定了温差发电装置内部流场的优化方向。利用ANSYS Fluent软件对不同肋片数目和肋片高度、不同肋片前后端高度、不同装置端口长度等诸多方案进行仿真计算,以热端表面平均温度和流场均匀性为依据,确定了相对较优的方案。根据所选方案进行装置改进和台架试验,在测试工况范围内相比原始方案,冷热端平均温差提高了8.8%,系统输出功率提高了5.8%。  相似文献   

15.
根据温差发电原理,设计了一种新型网格状通气管式的温差发电装置,实现对汽车尾气热能的再利用。通过优化温差发电装置的结构,改变了水箱结构,增加了废热通道数量,能够贴更多的温差发电片,从而提高转换效率。通过UG(计算机辅助设计软件)建立汽车尾气温差发电装置的理论模型,经过计算,当温差等于100℃时该装置的转换效率约等于5.67%。与其他温差发电装置进行比较,热油式温差发电器在260℃温差下最大热能转换效率可达4.389%,而汽车尾气温差发电器输出功率随着烟气温度的升高近似成线性递增,热能转换效率较低[1],通过比较得出,本装置不仅提高了转换效率,且达到相同转换效率时所对应的温差值也相应减少。  相似文献   

16.
以内燃机为动力的汽车尾气余热具有高度瞬变特性,而温差发电器(termoelectric generator,TEG)往往对温度的变化较为敏感,针对这一矛盾,在尾气管道和热电模块之间添加相变材料层以减缓尾气温度波动对热电模块性能的影响。通过模拟计算的方法,比较了变工况条件下,相变材料层的添加对热电模块热端平均温度、输出电压等因素的影响。结果表明,相变材料(phase change materia,PCM)的添加对热电模块热端温度波动起到了良好的缓冲作用,大大提高了TEG输出电压的稳定性。  相似文献   

17.
目的  为适应新能源电力并网需求,原有抽凝热电联产机组深度调峰供热改造已为重要途径之一。现有包括电热泵和电锅炉在内的热电转换装置为辅助火电机组调峰提供了潜在途径。 方法  以350 MW抽凝机组为例,建立了以热电转换装置辅助调峰参数优化模型,重点分析了热电转换设备参数对深度调峰性能的影响;其次,分别对比了电热泵和蓄热电锅炉两种典型热电转换系统在不同装置容量、不同放热速率下的调峰深度;最后,介绍了300 MW燃煤机组的煤耗率与污染物排放水平,指出本系统的节能效益,并给出热电转换装置的最优参数。 结果  结果显示:当电热泵的热功率为100 MW、放热速率与热功率相匹配也为100 MW时,机组的调峰深度达到最大值,为73 MW左右;当蓄热式电锅炉的电功率为45 MW、放热速率为100 MW时,机组的调峰深度达到最大值,为70.05 MW。蓄热式电锅炉的储热量在24 h中内略有增加,净储热量的数值为967.5 kWh。 结论  功率和放热速率是衡量热电转换装置辅助机组调峰能力的重要参数,且二者之间要有一定程度上的匹配性,针对不同情景灵活匹配热电转换装置的类型与参数可大幅提升机组的调峰深度。  相似文献   

18.
陈尊理 《节能技术》2002,20(6):38-40
本文对几个热电机组的数据进行分析后认为,假如没有达到规定的技术指标,热电联产不能提高能源利用率,也不能降低环境污染,这种现象如普遍存在,将会影响热电联产事业的发展。  相似文献   

19.
Waste heat recovery helps reduce energy consumption, decreases carbon emissions, and enhances sustainable energy development. In China, energy-intensive industries dominate the industrial sector and have significant potential for waste heat recovery. We propose a novel waste heat recovery system assisted by a heat pipe and thermoelectric generator (TEG) namely, heat pipe TEG (HPTEG),to simultaneously recover waste heat and achieve electricity generation. Moreover, the HPTEG provides a good approach to bridging the mismatch between energy supply and demand. Based on the technical reserve on high-temperature heat pipe manufacturing and TEG device integration, a laboratory-scale HPTEG prototype was established to investigate the coupling performances of the heat pipes and TEGs. Static energy conversion and passive thermal transport were achieved with the assistance of skutterudite TEGs and potassium heat pipes. Based on the HPTEG prototype, the heat transfer and the thermoelectric conversion performances were investigated. Potassium heat pipes exhibited excellent heat transfer performance with 95% thermal efficiency. The isothermality of such a heat pipe was excellent, and the heat pipe temperature gradient was within 15°C. The TEG's thermoelectric conversion efficiency of 7.5% and HPTEG's prototype system thermoelectric conversion efficiency of 6.2% were achieved. When the TEG hot surface temperature reached 625°C, the maximum electrical output power of the TEG peaked at 183.2 W, and the open-circuit voltage reached 42.2 V. The high performances of the HPTEG prototype demonstrated the potential of the HPTEG for use in engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号