首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
通过对传统的最小二乘支持向量机模型和粗糙集理论的研究,提出了一种基于粗糙集理论进行改进的最小二乘支持向量机预测技术,将粗糙集原理的属性约简与特征提取技术运用到输入指标的选取上,保留有用信息并剔除无用信息。最后,以美国PJM市场2012年1月至9月的日24点历史负荷为算例,对该时间段电力负荷进行模拟仿真。结果表明,经过粗糙集属性约简改进后的LS—SVM预测模型大大提高了其预测精度,拟合效果显著提高。  相似文献   

2.
钢铁企业电力负荷作为电力负荷的重要组成部分,钢铁电力负荷的准确预测对于提高电力负荷预测精度具有重要意义。为了实现钢铁电力负荷的中长期预测,本文选取了经济因素和社会因素作为自变量,引入带有惯性权重的粒子群算法(WPSO)对传统的最小二乘支持向量机智能预测模型(LSSVM)参数进行优化,并利用某地区钢铁电力负荷样本数据进行验证,拟合结果显示,经过粒子群算法优化后的最小二乘智能向量机算法预测精度更高,收敛速度更快,具有良好的推广性和适应性。  相似文献   

3.
为了提高负荷预测的拟合精度,提出一种基于优化灰狼算法的最小二乘支持向量机负荷预测模型,针对标准灰狼算法精度低、收敛速度慢、易陷入局部最优的缺点,采用差分算法优化标准灰狼算法。利用改进的灰狼算法优化最小二乘支持向量机的两个主要参数,建立功率负荷预测研究模型。通过实例分析获得负荷预测结果,利用三种评价指标对比了四种算法模型。实验表明,改进灰狼算法优化最小二乘支持向量机的改进评价指标数值较低,拟合曲线精度更高。  相似文献   

4.
影响中长期负荷变化的因素较多,单一预测模型很难满足预测需要,组合预测能够较好地解决单一模型的缺点,借鉴单一预测模型的优点。提出贝叶斯框架下最小二乘支持向量机(LS-SVM)中长期负荷组合预测模型,利用结构化风险原则代替经验风险最小化,挖掘各单一预测模型的信息,以单一模型的预测数作为组合预测输入样本,通过贝叶斯后验理论确定最小二乘支持向量机参数,建立组合预测模型进行预测。通过算例表明,提出的模型具有较高的预测精度,能够较好地解决小样本下的预测问题,具有良好的泛化能力和预测精度。  相似文献   

5.
为了对热负荷及时准确的预测,采用最小二乘支持向量机(Least squares support vector machines,LSSVM)算法,结合网格搜索的交叉验证参数寻优建立预测模型。实验表明,与遗传算法参数寻优的SVM相比,计算速度提高27倍,均方误差提高3倍,拟合相关参数达到99%,说明该模型能快速准确的预测预测下一个工作日的短期热负荷,是一种可行的、有效的预测方法。  相似文献   

6.
大量分布式能源站的出现以及电动汽车的普及,给电力系统的安全、经济运行带来影响的同时,传统的负荷预测方法也面临挑战。针对这个问题,提出了利用鲸鱼算法优化最小二乘支持向量机(Whale Optimization Algorithm-Least Squares Support Vector Machine,WOA-LSSVM)进行短期电力系统负荷预测。利用鲸鱼算法全局寻优能力强、收敛速度快的优点,弥补最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)选参的盲目性,提高LSSVM的负荷预测精度。采用WOA-LSSVM对2013年浙江某地区历史负荷数据预测未来1 d的负荷,并与粒子群优化最小二乘支持向量机模型和标准LSSVM模型预测结果对比。结果表明,基于鲸鱼优化LSSVM的短期负荷预测具有较高的预测精度,相对误差较小。  相似文献   

7.
提出了一种基于小波变换和自适应加权最小二乘支持向量机(AWLS-SVM)的电力系统短期负荷预测方法。针对负荷变化具有拟周期性和随机性的特点,本方法先将负荷值利用小波变换分解为几个低频段的拟周期量和一个高频段随机量,然后根据各分量特点应用AWLS-SVM模型进行预测,最后小波重构各分量获得预测结果。实例预测结果表明该方法具有较高的预测精度。  相似文献   

8.
《焦作工学院学报》2013,(3):327-331
应用最小二乘支持向量机进行短期负荷预测,为了体现离负荷预测点越远对负荷预测精度的影响越不明显,即"近大远小"的原则.对训练样本横向及纵向引入隶属度,并用留一法优化模型参数,实现参数的自适应选择,从而提高预测的精度.利用某区域电网最新的负荷数据进行仿真预测,并与不加权及其它的方法相比较.结果表明,所提出的方法与传统方法相比提高了预测的精度.  相似文献   

9.
提出了一种希尔伯特-黄变换和自适应加权最小二乘支持向量机相结合的短期电力负荷预测方法。先利用HHT中的经验模态分解,将负荷值分解为几个低频段的拟周期量和1个高频段随机量,然后根据各分量瞬时频率特点选择最佳的AWLS-SVM模型预测,最后将各分量预测数据叠加。实例预测结果表明,该方法具有较高的预测精度。  相似文献   

10.
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单、泛化性能好、不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。  相似文献   

11.
根据农网负荷的特点,构造了中期负荷预测的流程图,考虑采用确定性预测方法中的多元线性回归模型(或逐步回归模型)和不确定性预测方法中的灰色模型来进行预测,然后进行综合分析,得到负荷序列的最终预测结果.  相似文献   

12.
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求.  相似文献   

13.
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求.  相似文献   

14.
电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型。通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求。  相似文献   

15.
中长期负荷预测作为电力规划与调度中的重要一环,其影响因素有着多样性和不确定性等特点.选取支持向量机作为中长期负荷预测的核心算法,筛选多种区域宏观经济因素,利用粒子群(PSO)寻优与循环寻优的改进型算法对支持向量机(SVM)的参数进行优化及负荷预测.仿真结果显示,改进型PSOSVM算法有着较高的预测精度.  相似文献   

16.
基于电力系统中长期负荷预测的特点,针对常规灰色预测模型存在的不足,提出一种基于数据平滑处理,以及线性回归残差修正的改进灰色预测方法。对某地区算例比较和分析表明,本方法可明显提高中长期负荷预测精度。  相似文献   

17.
针对城市轨道交通供电牵引负荷对城网的影响,结合郑州轨道交通1,2号线的规划设计数据,对近期、中期和远期轨道交通线网规模,采用经验公式法对牵引电量进行了具体的量化计算;运用回归分析法进行负荷预测,对郑州轨道交通牵引负荷对城市配电网的影响进行评价.结果表明:轨道交通电力峰值负荷和城网峰值负荷基本不会重叠,负荷峰值最大贡献率约2%,因此,郑州轨道交通系统负荷对电网的影响相对较小.  相似文献   

18.
农村电网规划中的负荷预测   总被引:5,自引:0,他引:5  
负荷预测在农村电网发展规划过程中既是一个重要环节 ,又是一项基础性工作。作者根据农村电网特点 ,对农村电网负荷预测的基本程序和方法作了介绍和分析。  相似文献   

19.
基于神经网络最优组合预测在电力负荷预测中的应用   总被引:3,自引:1,他引:3  
为提高负荷预测的准确性,引入了最优组合预测模型,使几个电力负荷预测模型有机地结合起来.针对最优组合预测模型权重分配时出现的负权重问题,建立了基于神经网络的最优组合预测模型,通过实例论证,该模型具有较高的预测精度.  相似文献   

20.
为解决电力系统中的经济负荷分配问题,将改进粒子群算法用于其中。该算法是以基本粒子群算法为基础,利用优化惯性权重策略以及改进最优最差粒子策略,使改进粒子群算法具有高效率全局搜索能力。对三个算例进行仿真测试,证实该算法可有效地解决经济负荷分配问题;性能对比显示,该算法求得的解优于基本粒子群算法及其它优化算法所求得的解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号