首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A line of mice has been developed which are transgenic for an 8.2-kilobase (kb) genomic clone of the rat vasopressin (VP) gene. Using a polymerase chain reaction technique, the rat VP (rVP) transgene was shown to have tissue-specific mRNA expression in the hypothalamus, temporal lobe, parietal cerebral cortex, cerebellum, and posterior pituitary, similar to the tissue distribution of endogenous mouse and rat VP expression. Expression of transgenic rVP mRNA was also found in the lung and pancreas of the transgenic mice, sites of known ectopic expression of VP. Using two methods, Northern blot analysis with species-specific cRNA probes and a quantitative polymerase chain reaction technique, the quantity of rVP transgene mRNA was shown to regulate appropriately in response to an osmotic stimulus. After 72 h of water deprivation, the quantity of transgenic rVP mRNA increased 6.8 +/- 3.0-fold. This was not significantly different than the fold increase in mouse VP mRNA quantity seen in nontransgenic mice (4.8 +/- 1.5) but was significantly different (P < 0.05) than the 1.2 +/- 0.03-fold increase in rat VP mRNA seen in normal rats after water deprivation. In the rat hypothalamus, VP mRNA poly(A) tail length increases with osmotic stimulation, while in the mouse it does not. The poly(A) tail of transgenic rVP mRNA expressed in mouse hypothalamus did not increase in length after osmotic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The renin-angiotensin system is a major determinant of arterial pressure and volume homeostasis in mammals through the actions of angiotensin II, the proteolytic digestion product of angiotensinogen. Molecular genetic studies in several human populations have revealed genetic linkage between the angiotensinogen gene and both hypertension and increased plasma angiotensinogen. Transgenic mice were generated with a human angiotensinogen genomic clone to develop an animal model to examine tissue- and cell-specific expression of the gene and to determine if overexpression of angiotensinogen results in hypertension. Human angiotensinogen mRNA was expressed in transgenic mouse liver, kidney, heart, adrenal gland, ovary, brain, and white and brown adipose tissue and, in kidney, was exclusively localized to epithelial cells of the proximal convoluted tubules. Plasma levels of human angiotensinogen were approximately 150-fold higher in transgenic mice than that found normally in human plasma. The blood pressure of mice bearing the human angiotensinogen gene was normal but infusion of a single bolus dose of purified human renin resulted in a transient increase in blood pressure of approximately 30 mm Hg within 2 min. These results suggest that abnormalities in the angiotensinogen gene resulting in increased circulating levels of angiotensinogen could potentially contribute in part to the pathogenesis of essential hypertension.  相似文献   

3.
A possible role of metabolism by cytochrome P450 (P450) in ethyl carbamate-induced suppression of the antibody response to a T-cell-dependent antigen, sheep erythrocytes (SRBCs), was investigated in female Balb/C mice. When mice were treated with ethyl carbamate intraperitoneally for 14 consecutive days at 25, 50, 100, 200 and 400 mg/kg, the antibody response was significantly suppressed from 200 mg/kg. These doses also caused a decrease in thymus weight. An acute dosing of ethyl carbamate at 1 g/kg also caused not only a significant suppression of the antibody response, but also a decrease in thymus weight. The antibody response was most likely to be the IgM antibody response, which was demonstrated in a haemagglutination study. When mice were pretreated with phenobarbital (80 mg/kg) for 3 days to induce P450 enzymes, followed by administration of ethyl carbamate intraperitoneally for 7 consecutive days, the antibody response was more suppressed than in saline-pretreated controls. Moreover, a study using aminoacetonitrile, a P450 inhibitor, showed that the antibody response suppressed by ethyl carbamate was completely recovered by the inhibitor. The present results suggest that metabolism of ethyl carbamate by P450 may be the critical pathway to produce metabolites capable of suppressing the antibody response.  相似文献   

4.
With the explosion of genetic information, there has been a recognized need for more genetic knowledge among health care professionals. The National Coalition for Health Professional Education in Genetics (NCHPEG) was established in 1996 to address this need. This article briefly outlines the mission of this Coalition and gives an overview of its relationship to acute and critical care nurses.  相似文献   

5.
Owing to its inherent antimicrobial effect and positive charge, the expression of human lysozyme in bovine milk could be beneficial by altering the overall microbial level and the functional and physical properties of the milk. We have used transgenic mice as model systems to evaluate the expression of human lysozyme containing fusion gene constructs in the mammary gland. Expression of human lysozyme was targeted to the mammary gland by using the 5' promoter elements of either the bovine beta (line B mice) or alpha s1 (line H mice) casein genes coupled to the cDNA for human lysozyme. Expression of human lysozyme mRNA was not found in mammary tissue from any of line B mice. Tissues were analysed from six lines of H mice and two, H6 and H5, were found to express human lysozyme mRNA in the mammary gland at 42% and 116%, respectively, of the levels of the endogenous mouse whey acidic protein gene. At peak lactation, female mice homozygous for the H5 and H6 transgene have approximately twice the amount of mRNA encoding human lysozyme as hemizygous animals. Expression levels of human lysozyme mRNA in the mammary gland at time points representing late pregnancy, early, peak and late lactation corresponded to the profile of casein gene expression. Human lysozyme mRNA expression was not observed in transgenic males, virgin females or in the kidney, liver, spleen or brain of lactating females. A very low level of expression of human lysozyme mRNA was observed in the salivary gland of line H5.  相似文献   

6.
To examine the in vivo effects of a kinase-deficient mutant human insulin receptor, we used the muscle creatine kinase promoter to express a putative dominant-negative receptor: Ala1134-->Thr (Moller, D. E., Yokota, A., White, M. F., Pazianos, A. G., and Flier, J. S. (1990) J. Biol. Chem. 265, 14979-14985) in transgenic mice. Two lines were generated, where receptor expression was restricted to striated muscle and was increased by 5-12-fold in skeletal muscle. Transgenic gluteal muscle insulin receptor kinase activity was reduced by approximately 80% after maximal in vitro insulin stimulation. Glycogen content in this muscle was reduced by 45% in transgenic mice. Insulin levels were approximately 2-fold higher, and glucose concentrations were 12% higher in transgenics fed ad libitum. Transgenic mice exhibited reduced in vivo sensitivity to low dose (0.1 milliunits/g) intravenous insulin. In isolated soleus muscles from transgenics, where mutant receptors were expressed at lower levels, insulin-stimulated receptor kinase activity was reduced by 42%, but insulin-stimulated 2-deoxyglucose uptake was unaffected. These results indicate that (i) overexpression of a kinase-deficient human insulin receptor in muscle causes dominant-negative effects at the level of receptor kinase activation, (ii) impairment of insulin-stimulated muscle receptor tyrosine kinase activity can cause decreased insulin sensitivity in vivo, (iii) kinase-defective receptor mutants may be used to create novel animal models of tissue-specific insulin resistance.  相似文献   

7.
Interleukin (IL)-9, a pleiotropic cytokine produced by the Th2 subset of T lymphocytes has been proposed as product of a candidate gene responsible for asthma. Its wide range of biological functions on many cell types involved in the allergic immune response suggests a potentially important role in the complex pathogenesis of asthma. To investigate the contributions of IL-9 to airway inflammation and airway hyperresponsiveness in vivo, we created transgenic mice in which expression of the murine IL-9 cDNA was regulated by the rat Clara cell 10 protein promoter. Lung selective expression of IL-9 caused massive airway inflammation with eosinophils and lymphocytes as predominant infiltrating cell types. A striking finding was the presence of increased numbers of mast cells within the airway epithelium of IL-9-expressing mice. Other impressive pathologic changes in the airways were epithelial cell hypertrophy associated with accumulation of mucus-like material within nonciliated cells and increased subepithelial deposition of collagen. Physiologic evaluation of IL-9-expressing mice demonstrated normal baseline airway resistance and markedly increased airway hyperresponsiveness to inhaled methacholine. These findings strongly support an important role for IL-9 in the pathogenesis of asthma.  相似文献   

8.
The human cathepsin G (CG) gene is expressed only in promyelocytes and encodes a neutral serine protease that is packaged in the azurophil (primary) granules of myeloid cells. To define the cis-acting DNA elements that are responsible for promyelocyte-specific "targeting," we injected a 6-kb transgene containing the entire human CG gene, including coding sequences contained in a 2.7-kb region, approximately 2.5 kb of 5' flanking sequence, and approximately 0.8 kb of 3' flanking sequence. Seven of seven "transient transgenic" murine embryos revealed human CG expression in the fetal livers at embryonic day 15. Stable transgenic founder lines were created with the same 6-kb fragment; four of five founder lines expressed human CG in the bone marrow. The level of human CG expression was relatively low per gene copy when compared with the endogenous murine CG gene, and expression was integration-site dependent; however, the level of gene expression correlated roughly with gene copy number. The human CG transgene and the endogenous murine CG gene were coordinately expressed in the bone marrow and the spleen. Immunohistochemical analysis of transgenic bone marrow revealed that the human CG protein was expressed exclusively in myeloid cells. Expression of human CG protein was highest in myeloid precursors and declined in mature myeloid cells. These data suggest that the human CG gene was appropriately targeted and developmentally regulated, demonstrating that the cis-acting DNA sequences required for the early myeloid cell-specific expression of human CG are present in this small genomic fragment.  相似文献   

9.
Human erythropoietin (Epo) gene expression is inducible by hypoxia or anaemia in the kidney and liver. Previous transgenic mouse experiments have demonstrated that sequences required for Epo gene induction in the kidney reside in a 7 8 kb Barn HI fragment located 6 kb upstream of the gene. To sublocalize these sequences, we performed Desoxyribonuclease I (DNAse I) mapping studies using transgenic mice which carried this DNA fragment. These studies revealed a DNAse I hypersensitive site (DNAse I HS) located 4 6 kb from the upstream end of the 7.8 kb fragment in anaemic kidney and liver samples. Sequence analysis of the region encompassing the DNAse I HS revealed an element with remarkable homology to the 3' Epo gene hypoxia-inducible enhancer. This suggested the presence of an additional regulatory element that contributes to the control of hypoxia-inducible Epo gene expression in kidney and liver. We constructed transgenic mice containing the human Epo gene linked to either the 5 kb upstream or 2.5 kb downstream portion of the 7.8kb fragment. Inducible expression was limited to the liver. Thus, neither fragment was alone sufficient to confer kidney inducible expression. These findings indicate that sequences more than 8.5 kb upstream of the Epo gene are required for kidney-specific induction. They suggest that either those sequences reside in an 0.3 kb Hind III fragment located between the 5 kb and the 2.5 kb fragments or that sequences in the 5 kb or 0.3 kb fragments must interact with sequences in the 2.5 kb fragment to allow Epo gene induction in the kidney.  相似文献   

10.
In vitro, IL-6 is the main inducer of the human C-reactive protein (CRP) gene, and IL-1 and steroids can enhance this effect. However, in mice, IL-6 is necessary but not sufficient for induction of the human CRP transgene, and testosterone is required for its constitutive expression by males. To examine the relative contributions of testosterone and IL-6 in the regulation of CRP gene expression, we produced CRP-transgenic (CRPtg), IL-6-deficient (IL-6-/-) mice. Male CRPtg/IL-6-/- mice expressed CRP constitutively, but CRP levels were not increased after injection of LPS. However, acute-phase CRP levels were attained after injection of IL-6. In contrast, female CRPtg/IL-6-/- mice did not express CRP constitutively or after administration of LPS, IL-6, IL-1, or IL-6 plus IL-1. Like males, testosterone-treated CRPtg/IL-6-/- females expressed CRP constitutively, and their transgene responded to injection of IL-6. The endogenous acute-phase protein serum amyloid P (SAP) was expressed constitutively equally by male and female IL-6-/- mice, responded minimally to LPS, and did not respond to either IL-6 or IL-1 alone. Acute-phase levels of SAP were induced in IL-6-/- mice by injection of IL-6 together with IL-1 or LPS. We conclude that in vivo, both constitutive and IL-6-dependent acute-phase expression of the CRP transgene require testosterone. In contrast, testosterone is not required for expression of the SAP gene, which requires IL-1 plus IL-6 for acute-phase induction.  相似文献   

11.
The discovery of the superantigens (SAgs) offered new insights on the interaction between microorganisms and the host immune system. Associated to Major Histocompatibility Complex (MHC) class II molecules, SAgs bind to the variable domain of the beta chain (V beta) of the TCR alpha beta engaged in the family specificity of lymphocytes. Therefore, these molecules are able to activate a high number of T lymphocytes as well as surface MHC class II bearing cells, leading to an overriding release of cytokines and inflammatory mediators, which have been related to their toxic effects. Endogenous SAgs are encoded by murine tumor proviruses (Mtv) which are integrated in the genome of mice. Bacteria and viruses produce exogenous SAgs and those related to food poisoning have been widely studied. The presence of parasite SAgs is still unclear and further studies are required to establish their existence and effects on the corresponding infections.  相似文献   

12.
Bone sialoprotein (BSP) is a major protein of the mineralized bone extracellular matrix that has been implicated in the nucleation of hydroxyapatite crystals. Our previous studies have demonstrated that BSP mRNA is expressed by differentiated osteoblasts, odontoblasts, and cementoblasts involved in de novo mineralized tissue formation in a tissue-specific and developmentally regulated manner. To determine the basis of the selective expression of the BSP gene, we have generated four transgenic mouse lines in which 2.7 kb of the rat BSP promoter ligated to a luciferase reporter gene has been stably integrated into the mouse genome. Assays of luciferase activities in 5-day-old animals has revealed consistently high levels in bone tissues with negligible activities in various other organs including kidney, liver, stomach, intestine, and spleen. In some animals, variable expression was observed in brain and skin. Temporal analyses revealed the highest luciferase expression in neonatal bones, with expression decreasing markedly with subsequent growth and development, as observed previously for the endogenous gene in rats. Immunohistochemical analysis of luciferase activity and in situ hybridization of luciferase mRNA in bone tissues show that differentiated osteoblasts express the highest levels of luciferase, consistent with the induction of endogenous gene expression. These studies demonstrate that the regulation of the BSP gene during osteoblastic differentiation, together with its tissue-specific, developmentally regulated expression, is primarily mediated within the 2.7 kb region of the promoter.  相似文献   

13.
We have generated several transgenic mouse lines and rabbits expressing efficiently (up to 0.3 mg/ml in mice and up to 0.5 mg/ml in rabbits) human erythropoietin in their milk as bovine beta-lactoglobulin fusion protein. Human erythropoietin cDNA was inserted in frame into exon 5 of the bovine beta-lactoglobulin gene with a linker oligonucleotide encoding the cleavage site for bacterial IgA protease. RNA analysis performed on one lactating transgenic mouse and one transgenic rabbit revealed that the fusion gene was expressed almost exlusively in the mammary gland, although low amounts of transgene-derived RNA were detectable in salivary glands and uterus or in the kidney. The fusion protein was specifically cleaved with IgA protease. The erythropoietin part obtained upon digestion had a lower molecular mass than recombinant erythropoietin produced in Chinese hamster ovary cells. By deglycosylation analysis it was shown that the difference in size was due to a different type of glycosylation. Biological activity of the fusion protein, as determined by growth stimulation of TF-1 erythroleukemia cells, was less than 15% of that of human recombinant erythropoietin. Upon digestion of the fusion protein with IgA protease, biological activity comparable to that of the recombinant erythropoietin was recovered. Transgenic males and virgin females did not show signs of enhanced erythropoiesis, but lactating females expressing the transgene displayed transient increases in their hematocrit values.  相似文献   

14.
15.
16.
17.
Ferrochelatase catalyzes the chelation of ferrous iron and protoporphyrin to form heme. It is expressed as a housekeeping gene in all cells, but is upregulated during erythropoiesis. Ferrochelatase activity is deficient in the inherited disease protoporphyria as a result of heterogeneous mutations. Although human ferrochelatase is transcribed from a single promoter in both nonerythroid and erythroid cells, previous studies using transient transfection assays failed to demonstrate erythroid-specific increased expression from 4.0 kb of the human ferrochelatase promoter containing the erythroid cis-elements, GATA and NF-E2. The present study analyzes the in vivo regulation of the ferrochelatase gene to provide insights into the mechanism of its erythroid-specific enhancement. Transgenic (TG) mouse lines were generated in which the luciferase reporter gene was driven by either a 150-bp ferrochelatase minimal promoter (-0.15 TG) or by a 4.0 kb extended 5' upstream region (-4.0 TG). Expression of the -4.0 TG transgene was generally consistent with the endogenous gene during embryonic development and in nonerythroid and erythroid tissues as demonstrated by Northern blotting and mRNA in situ hybridization. The -4.0 TG was expressed at a higher level than the -0.15 TG in nonerythroid and erythroid tissues, including during extramedullary erythropoiesis induced by n-acetylphenylhydrazine injection. The enhanced erythroid expression of the -4.0 TG correlates with the appearance of a DNase I hypersensitive site in the 5' flanking region of the transgene. Therefore, in the context of chromosomal integration, the 5' flanking region of the ferrochelatase gene is necessary and sufficient to confer high levels of transgene expression in erythroid tissue.  相似文献   

18.
Investigations into the mechanisms and properties of gene conversion in mammals are greatly restricted by the inability to recover all the products of a meiosis. Additionally, the study of this process has been hampered by the lack of visible markers to detect gene conversion, especially when the events are rare. In previous work, we developed a transgenic system for detection and quantitation of gene conversion events in the germline of mice (Murti, J.R., Bumbulis, M., Schimenti, J.C., 1992. High frequency germline gene conversion in transgenic mice. Mol. Cell. Biol. 12, 2545-2552) that could be exploited as an assay for recombinogenic chemicals (Murti, J.R, Schimenti, K.J., Schimenti, J.C., 1994. A recombination-based transgenic mouse system for genotoxicity testing. Mutat. Res. 307, 583-595). A specific intrachromosomal gene conversion event between two complementarily defective lacZ genes resulted in the production of beta-galactosidase in spermatids, enabling a measurement of conversion frequency. Here, we report that the anticancer drug, cisplatin, increased gene conversion in meiotic stage cells in these transgenic mice. Furthermore, a method was developed for direct molecular analysis of transgene conversion events in single or pooled lacZ-positive spermatids. The ability to identify gametes that have undergone a rare gene conversion event, followed by molecular amplification of the recombinant gene, should make it possible to investigate the mechanisms of genetic recombination in mammals in greater detail than previously possible.  相似文献   

19.
OBJECTIVE: To determine whether a high level of hopelessness after treatment of a depressive episode is an indicator of a history of lifetime suicide attempts in older people. DESIGN: Groups of suicide attempters, suicidal ideators, and nonsuicidal patients were compared via analysis of variance with respect to levels of hopelessness, depression, anxiety, and global functioning before and after treatment of depression. SETTING: An outpatient research clinic providing two treatment protocols of late-life mood disorders. PARTICIPANTS: A total of 107 consecutive outpatients (mean age 67) with major depression who responded to treatment. MEASUREMENTS: Levels of hopelessness, severity of depression, anxiety, and global functioning were compared across the three groups at the beginning of treatment and at remission. RESULTS: After remission there were no differences between the three groups in depression severity, anxiety, and global functioning. Hopelessness remained significantly higher in the attempter group than among ideators or nonsuicidal patients. CONCLUSIONS: Suicide attempts, the most important risk factor for subsequent suicide, are associated with persistent, high levels of hopelessness following remission of depression in late-life patients. These findings suggest that treatments designed specifically to lower hopelessness (such as cognitive, behavioral or interpersonal therapy) may be effective in reducing suicide risk.  相似文献   

20.
To study the etiologic roles of genes on chromosome 12 for the pituitary tumorigenesis of adenomas, mutations of the p27Kip1 gene and allelic ratios of 18 microsatellite markers on the entire chromosome 12 were studied in 33 pituitary adenomas. The p27Kip1 gene on chromosome 12p12-p13 encoding an inhibitor of complexes between cyclins and cyclin-dependent kinases is supposed to function as the tumor suppressor gene. Among 31 sporadic and 2 familial pituitary adenomas, PCR-single strand conformation polymorphism analysis detected three polymorphic changes but no tumor-specific mutations of the p27Kip1 gene. Genotyping of 18 microsatellite markers on the entire chromosome 12 detected the uniformly decreased allelic ratios ranging from 54-66% in 8 of 33 pituitary adenomas (24%), although no loss of heterozygosity was detected. Fluorescence in situ hybridization confirmed trisomy 12 in all 5 available samples out of these 8 samples. Based on these, we conclude that not mutations of the p27Kip1 gene, but trisomy 12 may be etiologically important in a subgroup of pituitary adenomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号