首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast algorithms for generalized predictive control (GPC) are derived by adopting an approach whereby dynamic programming and a polynomial formulation are jointly exploited. They consist of a set of coupled linear polynomial recursions by which the dynamic output feedback GPC law is recursively computed wwith only O(Nn) computations for an n-th order plant and N-steps prediction horizon.  相似文献   

2.
3.
A generalized mapping strategy that uses a combination of graph theory, mathematical programming, and heuristics is proposed. The authors use the knowledge from the given algorithm and the architecture to guide the mapping. The approach begins with a graphical representation of the parallel algorithm (problem graph) and the parallel computer (host graph). Using these representations, the authors generate a new graphical representation (extended host graph) on which the problem graph is mapped. An accurate characterization of the communication overhead is used in the objective functions to evaluate the optimality of the mapping. An efficient mapping scheme is developed which uses two levels of optimization procedures. The objective functions include minimizing the communication overhead and minimizing the total execution time which includes both computation and communication times. The mapping scheme is tested by simulation and further confirmed by mapping a real world application onto actual distributed environments  相似文献   

4.
In this paper we construct approximate algorithms for the following problems: integer multiple-choice knapsack problem, binary multiple-choice knapsack problem and multi-dimensional knapsack problem. The main result can be described as follows: for every ε 0 one can construct a polynomial-time algorithm for each of the above problems such that the ratio of the value of the objective function by this algorithm and the optimal value is bounded below by 1 - ε.  相似文献   

5.
刘静姝  王莉  刘惊雷 《计算机应用》2005,40(12):3413-3422
为了解决样本数较大时,传统谱聚类算法执行特征分解消耗时间过大的问题,提出了一种无需特征分解的快速谱聚类算法,通过乘法更新迭代来降低时间开销。首先,利用Nyström方法进行随机采样,建立了采样矩阵和原始矩阵之间的关系;其次,基于乘法更新原理实现矩阵指示器矩阵的迭代更新;最后,在理论上对所设计算法进行了正确性和收敛性分析。在广泛使用的五个真实数据集和三个人工合成数据集上进行测试。实验结果表明,在真实数据集上,所提算法的标准互信息(NMI)平均值为0.45,与k-means聚类算法相比提高了12.50%;运行时间为61.73 s,与传统谱聚类算法相比减少了61.13%;而且表现性能优于层次聚类算法,验证了该算法的有效性。  相似文献   

6.
Recently, the residue number system (RNS) has been intensively studied. The Chinese remainder theorem (CRT) is a solution to the conversion problem of a number to RNS with a general moduli set. This paper introduces the generalized CRT (GCRT) with parallel algorithms used for the conversion. The GCRT differs from the CRT because it has the advantage of having more applications than does the CRT. The GCRT, however, has a disadvantage in computational performance. To remedy this shortcoming, this paper proposes algorithms that calculate concurrently for some non-related program fragments of GCRT computation. These proposed algorithms also allow the GCRT to compute more efficiently.  相似文献   

7.
A k-ranking of a graph is a labeling of the vertices with positive integers 1,2,…,k so that every path connecting two vertices with the same label contains a vertex of larger label. An optimal ranking is one in which k is minimized. Let Pn be a path with n vertices. A greedy algorithm can be used to successively label each vertex with the smallest possible label that preserves the ranking property. We seek to show that when a greedy algorithm is used to label the vertices successively from left to right, we obtain an optimal ranking. A greedy algorithm of this type was given by Bodlaender et al. in 1998 [1] which generates an optimal k-ranking of Pn. In this paper we investigate two generalizations of rankings. We first consider bounded (k,s)-rankings in which the number of times a label can be used is bounded by a predetermined integer s. We then consider kt-rankings where any path connecting two vertices with the same label contains t vertices with larger labels. We show for both generalizations that when G is a path, the analogous greedy algorithms generate optimal k-rankings. We then proceed to quantify the minimum number of labels that can be used in these rankings. We define the bounded rank number to be the smallest number of labels that can be used in a (k,s)-ranking and show for n?2, where i=⌊log2(s)⌋+1. We define the kt-rank number, to be the smallest number of labels that can be used in a kt-ranking. We present a recursive formula that gives the kt-rank numbers for paths, showing for all an−1<j?an where {an} is defined as follows: a1=1 and an=⌊((t+1)/t)an−1⌋+1.  相似文献   

8.
9.
Constructing plans that can handle multiple problem instances is a longstanding open problem in AI. We present a framework for generalized planning that captures the notion of algorithm-like plans and unifies various approaches developed for addressing this problem. Using this framework, and building on the TVLA system for static analysis of programs, we develop a novel approach for computing generalizations of classical plans by identifying sequences of actions that will make measurable progress when placed in a loop. In a wide class of problems that we characterize formally in the paper, these methods allow us to find generalized plans with loops for solving problem instances of unbounded sizes and also to determine the correctness and applicability of the computed generalized plans. We demonstrate the scope and scalability of the proposed approach on a wide range of planning problems.  相似文献   

10.
Particle swarm optimization-based algorithms for TSP and generalized TSP   总被引:5,自引:0,他引:5  
A novel particle swarm optimization (PSO)-based algorithm for the traveling salesman problem (TSP) is presented. An uncertain searching strategy and a crossover eliminated technique are used to accelerate the convergence speed. Compared with the existing algorithms for solving TSP using swarm intelligence, it has been shown that the size of the solved problems could be increased by using the proposed algorithm.Another PSO-based algorithm is proposed and applied to solve the generalized traveling salesman problem by employing the generalized chromosome. Two local search techniques are used to speed up the convergence. Numerical results show the effectiveness of the proposed algorithms.  相似文献   

11.
By applying the hierarchical identification principle, the gradient-based iterative algorithm is suggested to solve a class of complex matrix equations. With the real representation of a complex matrix as a tool, the sufficient and necessary conditions for the convergence factor are determined to guarantee that the iterative solutions given by the proposed algorithm converge to the exact solution for any initial matrices. Also, we solve the problem which is proposed by Wu et al. (2010). Finally, some numerical examples are provided to illustrate the effectiveness of the proposed algorithms and testify the conclusions suggested in this paper.  相似文献   

12.
This paper presents algorithms based on differential evolution (DE) to solve the generalized assignment problem (GAP) with the objective to minimize the assignment cost under the limitation of the agent capacity. Three local search techniques: shifting, exchange, and k-variable move algorithms are added to the DE algorithm in order to improve the solutions. Eight DE-based algorithms are presented, each of which uses DE with a different combination of local search techniques. The experiments are carried out using published standard instances from the literature. The best proposed algorithm using shifting and k-variable move as the local search (DE-SK) techniques was used to compare its performance with those of Bee algorithm (BEE) and Tabu search algorithm (TABU). The computational results revealed that the BEE and DE-SK are not significantly different while the DE-SK outperforms the TABU algorithm. However, even though the statistical test shows that DE-SK is not significantly different compared with the BEE algorithm, the DE-SK is able to obtain more optimal solutions (87.5%) compared to the BEE algorithm that can obtain only 12.5% optimal solutions. This is because the DE-SK is designed to enhance the search capability by improving the diversification using the DE's operators and the k-variable moves added to the DE can improve the intensification. Hence, the proposed algorithms, especially the DE-SK, can be used to solve various practical cases of GAP and other combinatorial optimization problems by enhancing the solution quality, while still maintaining fast computational time.  相似文献   

13.
In this paper, we study the application of the max-product algorithm (MPA) to the generalized multiple-fault diagnosis (GMFD) problem, which consists of components (to be diagnosed) and alarms/connections that can be unreliable. The MPA and the improved sequential MPA (SMPA) that we develop in this paper are local-message-passing algorithms that operate on the bipartite diagnosis graph (BDG) associated with the GMFD problem and converge to the maximum a posteriori probability (MAP) solution if this graph is acyclic (in addition, the MPA requires the MAP solution to be unique). Our simulations suggest that both the MPA and the SMPA perform well in more general systems that may exhibit cycles in the associated BDGs (the SMPA also appears to outperform the MPA in these more general systems). In this paper, we provide analytical results for acyclic BDGs and also assess the performance of both algorithms under particular patterns of alarm observations in general graphs; this allows us to obtain analytical bounds on the probability of making erroneous diagnosis with respect to the MAP solution. We also evaluate the performance of the MPA and the SMPA algorithms via simulations, and provide comparisons with previously developed heuristics for this type of diagnosis problems. We conclude that the MPA and the SMPA perform well under reasonable computational complexity when the underlying diagnosis graph is sparse.  相似文献   

14.
刘静姝  王莉  刘惊雷 《计算机应用》2020,40(12):3413-3422
为了解决样本数较大时,传统谱聚类算法执行特征分解消耗时间过大的问题,提出了一种无需特征分解的快速谱聚类算法,通过乘法更新迭代来降低时间开销。首先,利用Nyström方法进行随机采样,建立了采样矩阵和原始矩阵之间的关系;其次,基于乘法更新原理实现矩阵指示器矩阵的迭代更新;最后,在理论上对所设计算法进行了正确性和收敛性分析。在广泛使用的五个真实数据集和三个人工合成数据集上进行测试。实验结果表明,在真实数据集上,所提算法的标准互信息(NMI)平均值为0.45,与k-means聚类算法相比提高了12.50%;运行时间为61.73 s,与传统谱聚类算法相比减少了61.13%;而且表现性能优于层次聚类算法,验证了该算法的有效性。  相似文献   

15.
This paper deals with the problem of parameter estimation in the generalized Mallows model (GMM) by using both local and global search metaheuristic (MH) algorithms. The task we undertake is to learn parameters for defining the GMM from a dataset of complete rankings/permutations. Several approaches can be found in the literature, some of which are based on greedy search and branch and bound search. The greedy approach has the disadvantage of usually becoming trapped in local optima, while the branch and bound approach, basically A* search, usually comes down to approximate search because of memory requirements, losing in this way its guaranteed optimality. Here, we carry out a comparative study of several MH algorithms (iterated local search (ILS) methods, variable neighborhood search (VNS) methods, genetic algorithms (GAs) and estimation of distribution algorithms (EDAs)) and a tailored algorithm A* to address parameter estimation in GMMs. We use 22 real datasets of different complexity, all but one of which were created by the authors by preprocessing real raw data. We provide a complete analysis of the experiments in terms of accuracy, number of iterations and CPU time requirements.  相似文献   

16.
A generalized prototype protocol framework has been developed for designing ring based symmetric distributed termination detection algorithms. Then, based upon the framework, the derivation of a class of such algorithms, employing uni-directional control communication around a ring, has been discussed.  相似文献   

17.
Self-organizing nets for optimization   总被引:1,自引:0,他引:1  
Given some optimization problem and a series of typically expensive trials of solution candidates sampled from a search space, how can we efficiently select the next candidate? We address this fundamental problem by embedding simple optimization strategies in learning algorithms inspired by Kohonen's self-organizing maps and neural gas networks. Our adaptive nets or grids are used to identify and exploit search space regions that maximize the probability of generating points closer to the optima. Net nodes are attracted by candidates that lead to improved evaluations, thus, quickly biasing the active data selection process toward promising regions, without loss of ability to escape from local optima. On standard benchmark functions, our techniques perform more reliably than the widely used covariance matrix adaptation evolution strategy. The proposed algorithm is also applied to the problem of drag reduction in a flow past an actively controlled circular cylinder, leading to unprecedented drag reduction.  相似文献   

18.
For semiparametric models, one of the key issues is to reduce the predictors’ dimension so that the regression functions can be efficiently estimated based on the low-dimensional projections of the original predictors. Many sufficient dimension reduction methods seek such principal projections by conducting the eigen-decomposition technique on some method-specific candidate matrices. In this paper, we propose a sparse eigen-decomposition strategy by shrinking small sample eigenvalues to zero. Different from existing methods, the new method can simultaneously estimate basis directions and structural dimension of the central (mean) subspace in a data-driven manner. The oracle property of our estimation procedure is also established. Comprehensive simulations and a real data application are reported to illustrate the efficacy of the new proposed method.  相似文献   

19.
We develop efficient algorithms for a number of generalized intersection reporting problems, including orthogonal and general segment intersection, 2D range searching, rectangular point enclosure, and rectangle intersection search. Our results for orthogonal and general segment intersection, 3-sided 2D range searching, and rectangular pointer enclosure problems match the lower bounds for their corresponding standard versions under the pointer machine model. Our results for the remaining problems improve upon the best known previous algorithms.  相似文献   

20.
Algorithms described in the literature for adaptation of equalizers usually consider minimization of a mean square cost. The mean square cost considered is usually comprised of two components; one component is the mean square error which arises because of inexact equilization of the channel response to the desired response. The other component can be identified as the mean square value of the noise at the output of the equalizer which is generated by channel noise.The paper describes algorithms which enable the two components to be independently weighted and the weighted mean square error minimized by the adaptive algorithms.Motivation for considering the independent weight is discussed in relation to the use of a compromised Viterbi algorithm receiver for the recovery of digital data transmitted over a noisy dispersive channel. However, other applications also exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号