首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
We sampled seawater and snowpacks in the Canadian high Arctic for methylated species of mercury (Hg). We discovered that, although seawater sampled under the sea ice had very low concentrations of total Hg (THg, all forms of Hg in a sample; on average 0.14-0.24 ng L(-1)), 30-45% of the THg was in the monomethyl Hg (MMHg) form (on average 0.057-0.095 ng L(-1)), making seawater itself a direct source of MMHg for biomagnification through marine food webs. Seawater under the ice also contained high concentrations of gaseous elemental Hg (GEM; 129 +/- 36 pg L(-1)), suggesting that open water regions such as polynyas and ice leads were a net source of approximately 130 +/- 30 ng Hg m(-2) day(-1) to the atmosphere. We also found 11.1 +/- 4.1 pg L(-1) of dimethyl Hg (DMHg) in seawater and calculated that there could be a significant flux of DMHg to the atmosphere from open water regions. This flux could then resultin MMHg deposition into nearby snowpacks via oxidation of DMHg to MMHg in the atmosphere. In fact, we found high concentrations of MMHg in a few snowpacks near regions of open water. Interestingly, we discovered a significant log-log relationship between Cl- concentrations in snowpacks and concentrations of THg. We hypothesize that as Cl- concentrations in snowpacks increase, inorganic Hg(II) occurs principally as less reducible chloro complexes and, hence, remains in an oxidized state. As a result, snowpacks that receive both marine aerosol deposition of Cl- and deposition of Hg(II) via springtime atmospheric Hg depletion events, for example, may contain significant loads of Hg(II). Overall, though, the median wet/dry loads of Hg in the snowpacks we sampled in the high Arctic (5.2 mg THg ha(-1) and 0.03 mg MMHg ha(-1)) were far below wet-only annual THg loadings throughout southern Canada and most of the U.S. (22-200 mg ha(-1)). Therefore, most Arctic snowpacks contribute  相似文献   

2.
Hourly averaged gaseous elemental Hg (GEM) concentrations and hourly integrated reactive gaseous Hg (RGM), and particulate Hg (Hg(p)) concentrations in the ambient air were measured at Huntington Forest in the Adirondacks, New York from June 2006 to May 2007. The average concentrations of GEM, RGM, and Hg(p) were 1.4 +/- 0.4 ng m(-3), 1.8 +/- 2.2 pg m(-3), and 3.2 +/- 3.7 pg m(-3), respectively. RGM represents < 3.5% of total atmospheric Hg or total gaseous Hg (TGM: GEM + RGM) and Hg(p) represents < 3.0% of the total atmospheric Hg. The highest mean concentrations of GEM, RGM, and Hg(p) were measured during winter and summer whereas the lowest mean concentrations were measured during spring and fall. Significant diurnal patterns were apparent in warm seasons for all species whereas diurnal patterns were weak in cold seasons. RGM was better correlated with ozone concentration and temperature in both warm (rho (RGM - ozone) = 0.57, p < 0.001; rho (RGM - temperature) = 0.62, p < 0.001) and cold seasons (rho (RGM - ozone) = 0.48, p = 0.002; rho (RGM - temperature) = 0.54, p = 0.011) than the other species. Potential source contribution function (PSCF) analysis was applied to identify possible Hg sources. This method identified areas in Pennsylvania, West Virginia, Ohio, Kentucky, Texas, Indiana, and Missouri, which coincided well with sources reported in a 2002 U.S. mercury emissions inventory.  相似文献   

3.
At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of interannual variability for 2002-2004 using the optimal configuration. We estimated the uncertainty of the model results to the Hg/Br reaction rate coefficient to be approximately 6%. Springtime is clearly demonstrated as the most active period of mercury exchanges and net surface gain (approximately 46% of annual accumulation) in the Arctic.  相似文献   

4.
The springtime phenomenon, termed as the mercury depletion event (MDE), during which elemental gaseous mercury (Hg0) may be converted to a reactive form that accumulates in polar ecosystems, first noted in the Arctic, has now been observed at both poles and results in an important removal pathway for atmospheric mercury. An intensive international springtime mercury experiment was performed at Ny-Alesund, Spitsbergen, from 19 April to 13 May 2003 to study the atmospheric mercury chemistry in the Arctic environment and, in particular, the MDEs which occurred in the arctic boundary layer after polar sunrise. Automated ambient measurements of Hg0, divalent reactive gaseous mercury (RGM) and fine particulate mercury (<2.5 microm) (Hg(p)) were made at the Zeppelin Mountain Station (ZMS). During the experiment mercury concentrations in the lower atmosphere varied in synchrony with ozone levels throughout the Spring. Hg0 concentrations ranged from background levels (approximately 1.6 ng m(-3)) to undetectable values (<0.1 ng m(-3)) during the first and major MDE, while RGM data showed an opposite trend during the sampling period with concentrations increasing dramatically to a peak of 230 pg m(-3), synchronous with the depletion of Hg0. The results of a meteorological transport analysis indicate the MDEs observed at ZMS were primarily due to air masses being transported in from open water areas in the Arctic Ocean that were already depleted of Hg0 when they arrived and not due to in-situ oxidation mechanisms.  相似文献   

5.
Atmospheric mercury depletion episodes (AMDEs) were studied at Station Nord, Northeast Greenland, 81 degrees 36' N, 16 degrees 40' W, during the Arctic Spring. Gaseous elemental mercury (GEM) and ozone were measured starting from 1998 and 1999, respectively, until August 2002. GEM was measured with a TEKRAN 2735A automatic mercury analyzer based on preconcentration of mercury on a gold trap followed by detection using fluorescence spectroscopy. Ozone was measured by UV absorption. A scatter plot of GEM and ozone concentrations confirmed that also at Station Nord GEM and ozone are linearly correlated during AMDEs. The relationship between ozone and GEM is further investigated in this paper using basic reaction kinetics (i.e., Cl, ClO, Br, and BrO have been suggested as reactants for GEM). The analyses in this paper show that GEM in the Arctic troposphere most probably reacts with Br. On the basis of the experimental results of this paper and results from the literature, a simple parametrization for AMDE was included into the Danish Eulerian Hemispheric Model (DEHM). In the model, GEM is converted linearly to reactive gaseous mercury (RGM) over sea ice with temperature below -4 degrees C with a lifetime of 3 or 10 h. The new AMDE parametrization was used together with the general parametrization of mercury chemistry [Petersen, G.; Munthe, J.; Pleijel, K.; Bloxam, R.; Vinod Kumar, A. Atmos. Environ. 1998, 32, 829-843]. The obtained model results were compared with measurements of GEM at Station Nord. There was good agreement between the start and general features periods with AMDEs, although the model could not reproduce the fast concentration changes, and the correlation between modeled and measured values decreased from 2000 to 2001 and further in 2002. The modeled RGM concentrations over the Arctic in 2000 were found to agree well with the temporal and geographical variability of the boundary column of monthly average BrO observed by the GOME satellite. Scenario calculations were performed with and without AMDEs. For the area north of the Polar Circle, the mercury deposition increases from 89 tons/year for calculations without an AMDE to 208 tons/year with the AMDE. The 208 tons/year represent an upper limit for the mercury load to the Artic.  相似文献   

6.
Atmospheric mercury speciation measurements were performed during a 10 week Arctic summer expedition in the North Atlantic Ocean onboard the German research vessel RV Polarstern between June 15 and August 29, 2004. This expedition covered large areas of the North Atlantic and Arctic Oceans between latitudes 54 degrees N and 85 degrees N and longitudes 16 degrees W and 16 degrees E. Gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P) were measured during this study. In addition, total mercury in surface snow and meltwater ponds located on sea ice floes was measured. GEM showed a homogeneous distribution over the open North Atlantic Ocean (median 1.53 +/- 0.12 ng/m3), which is in contrast to the higher concentrations of GEM observed over sea ice (median 1.82 +/- 0.24 ng/m3). It is hypothesized that this results from either (re-) emission of mercury contained in snow and ice surfaces that was previously deposited during atmospheric mercury depletion events (AMDE) in the spring or evasion from the ocean due to increased reduction potential at high latitudes during Arctic summer. Measured concentrations of total mercury in surface snow and meltwater ponds were low (all samples <10 ng/L), indicating that marginal accumulation of mercury occurs in these environmental compartments. Results also reveal low concentrations of RGM and Hg-P without a significant diurnal variability. These results indicate that the production and deposition of these reactive mercury species do not significantly contribute to the atmospheric mercury cycle in the North Atlantic Ocean during the Arctic summer.  相似文献   

7.
We identified some of the sources and sinks of monomethyl mercury (MMHg) and inorganic mercury (HgII) on Ellesmere Island in the Canadian High Arctic. Atmospheric Hg depletion events resulted in the deposition of Hg(II) into the upper layers of snowpacks, where concentrations of total Hg (all forms of Hg) reached over 20 ng/L. However, our data suggest that much of this deposited Hg(II) was rapidly photoreduced to Hg(0) which then evaded back to the atmosphere. As a result, we estimate that net wet and dry deposition of Hg(II) during winter was lower at our sites (0.4-5.9 mg/ha) than wet deposition in more southerly locations in Canada and the United States. We also found quite high concentrations of monomethyl Hg (MMHg) in snowpacks (up to 0.28 ng/L), and at times, most of the Hg in snowpacks was present as MMHg. On the Prince of Wales Icefield nearthe North Water Polynya, we observed a significant correlation between concentrations of Cl and MMHg in snow deposited in the spring, suggesting a marine source of MMHg. We hypothesize that dimethyl Hg fluxes from the ocean to the atmosphere through polynyas and open leads in ice, and is rapidly photolyzed to MMHgCl. We also found that concentrations of MMHg in initial snowmelt on John Evans Glacier (up to 0.24 ng/L) were higher than concentrations of MMHg in the snowpack (up to 0.11 ng/L), likely due to either sublimation of snow or preferential leaching of MMHg from snow during the initial melt phase. This springtime pulse of MMHg to the High Arctic, in conjunction with climate warming and the thinning and melting of sea ice, may be partially responsible for the increase in concentrations of Hg observed in certain Arctic marine mammals in recent decades. Concentrations of MMHg in warm and shallow freshwater ponds on Ellesmere Island were also quite high (up to 3.0 ng/L), leading us to conclude that there are very active regions of microbial Hg(II) methylation in freshwater systems during the short summer season in the High Arctic.  相似文献   

8.
Polar regions are subject to contamination by mercury (Hg) transported from lower latitudes, severely impacting human and animal health. Atmospheric Mercury Depletion Events (AMDEs) are an episodic process by which Hg is transferred from the atmospheric reservoir to arctic snowpacks. The fate of Hg deposited during these events is the subject of numerous studies, but its speciation remains unclear, especially in terms of environmentally relevant forms such as bioavailable mercury (BioHg). Here, using a bacterial mer-lux biosensor, we report the fraction of newly deposited Hg at the surface and at the bottom of the snowpack that is bioavailable. Snow samples were collected over a two-month arctic field campaign in 2008. In surface snow, BioHg is related to atmospheric Hg deposition and snow fall events were shown to contribute to higher proportions of BioHg than AMDEs. Based on our data, AMDEs represent a potential source of 20 t.y(-1) of BioHg, while wet and dry deposition pathways may provide 135-225 t.y(-1) of BioHg to Arctic surfaces.  相似文献   

9.
Mercury is deposited to the Polar Regions during springtime atmospheric mercury depletion events (AMDEs) but the relationship between snow and ice crystal formation and mercury deposition is not well understood. The objective of this investigation was to determine if mercury concentrations were related to the type and formation of snow and ice crystals. On the basis of almost three hundred analyses of samples collected in the Alaskan Arctic, we suggestthat kinetic crystals growing from the vapor phase, including surface hoar, frost flowers, and diamond dust, yield mercury concentrations that are typically 2-10 times higher than that reported for snow deposited during AMDEs (approximately 80 ng/L). Our results show that the crystal type and formation affect the mercury concentration in any given snow sample far more than the AMDE activity prior to snow collection. We present a conceptual model of how snow grain processes including deposition, condensation, reemission, sublimation, and turbulent diffusive uptake influence mercury concentrations in snow and ice. These processes are time dependent and operate collectively to affect the retention and fate of mercury in the cryosphere. The model highlights the importance of the formation and postdeposition crystallographic history of snow or ice crystals in determining the fate and concentration of mercury in the cryosphere.  相似文献   

10.
Wet deposition of Hg in snow represents a major air-to-land flux of Hg in temperate and polar environments. However, the chemical speciation of Hg in snow and its chemical and physical behavior after deposition are poorly understood. To investigate Hg dynamics in snow, we followed Hg0 and total Hg concentrations in a snowpack above a frozen lake over 1 month. Our results indicate that newly deposited Hg is highly labile in snowpacks. On average, Hg levels in particular snow episodes decrease by 54% within 24 h after deposition. We hypothesize that Hg depletion in snow could be caused by a rapid snow-to-air Hg transfer resulting from Hg(II) photoinduced reduction to volatile Hg0. Both snowmelt incubated under a UV lamp at 17 degrees C and solid snow incubated under the sun at -10 degrees C in clear reaction vessels yielded a statistically significant increase in Hg0(aq) with time of exposure, while the Hg0(aq) levels remained constant in the dark controls. The snow-to-air Hg transfer we observed in this study suggests that the massive Hg deposition events observed in springtime in northern environments may have less impact than previously anticipated, since once deposited, Hg could be rapidly reduced and re-emitted.  相似文献   

11.
Polar bears (Ursus maritimus) are being impacted by climate change and increased exposure to pollutants throughout their northern circumpolar range. In this study, we quantified concentrations of total mercury (THg) in the hair of polar bears from Canadian high- (southern Beaufort Sea, SBS) and sub- (western Hudson Bay, WHB) Arctic populations. Concentrations of THg in polar bears from the SBS population (14.8 ± 6.6 μg g(-1)) were significantly higher than in polar bears from WHB (4.1 ± 1.0 μg g(-1)). On the basis of δ(15)N signatures in hair, in conjunction with published δ(15)N signatures in particulate organic matter and sediments, we estimated that the pelagic and benthic food webs in the SBS are ~ 4.7 and ~ 4.0 trophic levels long, whereas in WHB they are only ~ 3.6 and ~ 3.3 trophic levels long. Furthermore, the more depleted δ(13)C ratios in hair from SBS polar bears relative to those from WHB suggests that SBS polar bears feed on food webs that are relatively more pelagic (and longer), whereas polar bears from WHB feed on those that are relatively more benthic (and shorter). Food web length and structure accounted for ~ 67% of the variation we found in THg concentrations among all polar bears across both populations. The regional difference in polar bear hair THg concentrations was also likely due to regional differences in water-column concentrations of methyl Hg (the toxic form of Hg that biomagnifies through food webs) available for bioaccumulation at the base of the food webs. For example, concentrations of methylated Hg at mid-depths in the marine water column of the northern Canadian Arctic Archipelago were 79.8 ± 37.3 pg L(-1), whereas, in HB, they averaged only 38.3 ± 16.6 pg L(-1). We conclude that a longer food web and higher pelagic concentrations of methylated Hg available to initiate bioaccumulation in the BS resulted in higher concentrations of THg in polar bears from the SBS region compared to those inhabiting the western coast of HB.  相似文献   

12.
The primary goal of the Florida Atmospheric Mercury Study (FAMS) was to quantify the atmospheric deposition of Hg throughout Florida. Monthly integrated precipitation and weekly integrated particulate samples were collected at 10 sites in Florida for periods ranging from 2 to 5 yr. The monthly rainfall across the state and the concentrations of Hg in wet-only and bulk deposition increased by a factor of 2-3 during the summertime "wet season" (May-October). These parallel increases in rainfall amount and Hg concentration resulted in 5-8-fold increases in rainfall Hg deposition during the wet season. The annual volume-weighted Hg concentrations ranged from 14 +/- 2 to 16 +/- 2 ng/L across southern Florida, and the annual rainfall Hg fluxes ranged from 20 +/- 3 to 23 +/- 3 micrograms m-2 yr-1. The weekly integrated particulate Hg concentrations in southern Florida were low (4.9-9.3 pg/m3) and did not exhibit strong seasonal variability. Considering the pronounced seasonal pattern in rainfall Hg deposition, the relatively uniform summertime rainfall Hg concentrations, and the low concentrations of particulate Hg, we conclude that processes other than particulate Hg transport and scavenging govern rainfall Hg deposition in southern Florida. We hypothesize that long-range transport of reactive gaseous Hg (RGM) species coupled with strong convective thunderstorm activity during the summertime represents > 50% of the Hg deposition in southern Florida. Model calculations indicate that local anthropogenic particulate Hg and RGM emissions account for 30-46% of the summertime rainfall Hg deposition across the southern Florida peninsula.  相似文献   

13.
The forest canopy was an important contributor to fluxes of methyl mercury (MeHg) and total mercury (THg) to the forest floor of boreal uplands and wetlands and potentially to downstream lakes, at the Experimental Lakes Area (ELA), northwestern Ontario. The estimated fluxes of MeHg and THg in throughfall plus litterfall below the forest canopy were 2 and 3 times greater than annual fluxes by direct wet deposition of MeHg (0.9 mg of MeHg ha(-1)) and THg (71 mg of THg ha(-1)). Almost all of the increased flux of MeHg and THg under the forest canopy occurred as litterfall (0.14-1.3 mg of MeHg ha(-1) yr(-1) and 110-220 mg of THg ha(-1) yr(-1)). Throughfall added no MeHg and approximately 9 mg of THg ha(-1) yr(-1) to wet deposition at ELA, unlike in other regions of the world where atmospheric deposition was more heavily contaminated. These data suggest that dry deposition of Hg on foliage as an aerosol or reactive gaseous Hg (RGM) species is low at ELA, a finding supported by preliminary measurements of RGM there. Annual total deposition from throughfall and litterfall under a fire-regenerated 19-yr-old jack pine/birch forest was 1.7 mg of MeHg ha(-1) and 200 mg of THg ha(-1). We found that average annual accumulation of MeHg and THg in the surficial litter/fungal layer of soils since the last forest fire varied between 0.6 and 1.6 mg of MeHg ha(-1) and between 130 and 590 mg of THg ha(-1) among sites differing in drainage and soil moisture. When soil Hg accumulation sites were matched with similar sites where litterfall and throughfall were collected, measured fluxes of THg to the forest floor (sources) were similar to our estimates of longterm soil accumulation rates (sinks), suggesting that the Hg in litterfall and throughfall is a new and not a recycled input of Hg to forested ecosystems. However, further research is required to determine the proportion of Hg in litterfall that is being biogeochemically recycled within forest and wetland ecosystems and, thus, does not represent new inputs to the forest ecosystem.  相似文献   

14.
Knowledge of atmospheric mercury speciation is critical to modeling its fate. Thus there is a crucial need for reliable methods to measure the fraction of gaseous atmospheric Hg which is in the oxidized Hg(II) form (termed reactive gaseous mercury, RGM). We have developed a novel method for measurement of RGM using a refluxing mist chamber, and we recently reported the results of sampling campaigns for RGM in Tennessee and Indiana. In general, measured RGM levels were about 3% of total gaseous mercury (TGM), and our results support prevailing hypotheses about the nature and behavior of RGM in ambient air. Because its use for RGM is growing, we now report in more detail the development and testing of the mist chamber method. Several styles of mist chambers have been investigated. The most versatile design employs a single nebulizer nozzle and can operate at flows of 15-20 L/min. The water-soluble Hg is collected in ca. 20 mL of absorbing solution, which is then analyzed for Hg(II) by SnCl2 reduction and CVAFS. One-hour samples (ca. 1 m3 of air) generally contain 50-200 pg of RGM. The method detection limit for 1-h samples is approximately 6-10 pg/m3. Thus short sample times can reveal temporal variations in RGM that would not otherwise be observable. The efficiency of collecting RGM in mist chambers is highly dependent on Cl- concentration in the absorbing solution, in keeping with equilibrium calculations. Artifact formation of Hg(II) by oxidation of Hg0 under ozone ambient conditions appears to be sufficiently slow so as to be negligible for the short (ca. 1 h) runs that are typically employed. We observed no significant error from cosampled particles or aerosols in rural nonimpacted air samples. We have developed a simple approach to analyzing mist chamber samples in the field using an automated Hg sampler.  相似文献   

15.
We reconstruct from lake-sediment archives atmospheric Hg deposition to Arctic Alaska over the last several centuries and constrain a contemporary lake/watershed mass-balance with real-time measurement of Hg fluxes in rainfall, runoff, and evasion. Results indicate that (a) anthropogenic Hg impact in the Arctic is of similar magnitude to that at temperate latitudes; (b) whole-lake Hg sedimentation determined from 55 210Pb-dated cores from the five small lakes demonstrates a 3-fold increase in atmospheric Hg deposition since the advent of the Industrial Revolution; (c) because of high soil Hg concentrations and relatively low atmospheric deposition fluxes, erosional inputs to these lakes are more significant than in similar temperate systems; (d) volatilization accounts for about 20% of the Hg losses (evasion and sedimentation); and (e) another source term is needed to balance the evasional and sedimentation sinks. This additional flux (1.21+/-0.74 microg m(-2) yr(-1)) is comparable to direct atmospheric Hg deposition and may be due to some combination of springtime Arctic depletion and more generalized deposition of reactive gaseous Hg species.  相似文献   

16.
Continuous atmospheric measurements of speciated mercury (Hg) (elemental mercury (Hg?), reactive gaseous mercury (RGM), and particulate mercury (Hgp)) were made in Rochester, NY from Dec 2007 to May 2009. Continuous measurements of ozone (O?), sulfur dioxide (SO?), carbonmonoxide (CO), particulate matter (PM?.?), and meteorological data were also available. A principle components analysis (PCA) of 3886 observations of 13 variables for the period identified six major factors. Melting snow was observed to be a source of Hg?in winters. Positive correlations between RGM and O? in the spring and summer may be indicative of Hg? oxidation. RGM concentrations increased simultaneously with SO? suggesting the influence of coal fired power plants (CFPP). The ?fth factor (F5) containing O? (high negative loading), CO (positive loading), Hg? and Hg(p) (positive), and/or RGM (negative) was identified as a mobile source which was usually observed during morning rush hours (6:00-9:00 a.m.). The concentrations of the three mercury species from the direction of the CFPP were significantly reduced following the shutdown of this source.  相似文献   

17.
Automated speciated mercury measurements in Michigan   总被引:2,自引:0,他引:2  
Automated speciated mercury measurements were made at a rural (Dexter, MI) and an urban (Detroit, MI) site in Michigan during selected times from 1999 to 2002 to assess the concentrations of elemental (Hg0), reactive gaseous (RGM), and particulate mercury (Hgp) in these environments. Here we present the first-ever reported values for RGM in Michigan. Median RGM concentrations were 2.21-2.93 pg m(-3) at Dexter and were 3-11 times higher in Detroit at 6.41-22.0 pg m(-3). Maximum RGM concentrations of 38.7 pg m(-3) and 270 pg m(-3) were observed in Dexter and Detroit, respectively. Measured RGM/Hg0 ratios were in the range of 0.04-11.60% indicating that at times RGM comprises greater than the currently held view of 5% of total gaseous mercury in the air. Well-pronounced diurnal patterns of RGM were observed at the rural site, whereas the urban site exhibited patterns that were influenced by nighttime emissions and regional transport. An analysis of RGM/Hgp ratios at the urban site when combined with trajectory analysis suggests that the site receives mercury inputs from both local and regional sources. Episodes of elevated ozone concentrations which were accompanied by increases in RGM concentrations were observed to occur in the late afternoon and overnight. These may be evidence of advection of ozone and RGM over long distances to the site.  相似文献   

18.
Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m(-3) for elemental mercury (Hg0) and 38 300 pg m(-3) for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NO(x) were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NO(x) ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site.  相似文献   

19.
This research was initiated to characterize atmospheric deposition of reactive gaseous mercury (RGM), particulate mercury (HgP; <2.5 microm), and gaseous elemental mercury (Hg0) in the arid lands of south central New Mexico. Two methods were field-tested to estimate dry deposition of three mercury species. A manual speciation sampling train consisting of a KCl-coated denuder, 2.5 microm quartz fiber filters, and gold-coated quartz traps and an ion-exchange membrane (as a passive surrogate surface) were deployed concurrently over 24-h intervals for an entire year. The mean 24-h atmospheric concentration for RGM was 6.8 pg m(-3) with an estimated deposition of 0.10 ng m(-2) h(-1). The estimated deposition of mercury to the passive surrogate surface was much greater (4.0 ng m(-2) h(-1)) but demonstrated a diurnal pattern with elevated deposition from late afternoon to late evening (1400-2200; 8.0 ng m(-2) h(-1)) and lowest deposition during the night just prior to sunrise (2200-0600; 1.7 ng m(-2) h(-1)). The mean 24-h atmospheric concentrations for HgP and Hg0 were 1.52 pg m(-3) and 1.59 ng m(-3), respectively. Diurnal patterns were observed for RGM with atmospheric levels lowest during the night prior to sunrise (3.8 pg m(-3)) and greater during the afternoon and early evening (8.9 pg m(-3)). Discernible diurnal patterns were not observed for either HgP or Hg0. The total dry deposition of Hg was 5.9 microg m-2 year-' with the contribution from the three species as follows: RGM (0.88 microg m(-2) year(-1)), HgP (0.025 microg m(-2) year(-1)), and Hg0 (5.0 microg m(-2) year(-1)). The annual wet deposition for total mercury throughout the same collection duration was 4.2 microg m(-2) year (-1), resulting in an estimated total deposition of 10.1 microg m(-2) year(-1) for Hg. On one sampling date, enhanced HgP (12 pg m(-3)) was observed due to emissions from a wildfire approximately 250 km to the east.  相似文献   

20.
Mercury emissions from cement-stabilized dredged material   总被引:1,自引:0,他引:1  
Upland placement of dredged materials from navigation channels in the New York/New Jersey Harbor is currently being used to manage sediments deemed inappropriate for open water disposal. Although upland placement sites are equipped with engineering controls (leachate collection and/or barrier walls), little is known of the potential impacts of this approach to air quality. The aim of this study was to estimate the flux of mercury to the atmosphere from New York/New Jersey Harbor stabilized dredged material (SDM) that was used for land reclamation at a site in northeastern New Jersey. Total gaseous mercury (TGM) was measured at a site receiving SDM in August and October 2001 and May and November 2002. TGM was also monitored at an urban reference site 3.5 km west of the SDM site in September 2001 and from February 2002 to July 2002 and from October 2002 to February 2003. The concentration of TGM at the urban reference site averaged 2.2 +/- 1.1 ng m(-3), indicating some local contribution to the Northern Hemisphere background. TGM concentrations exhibited seasonality with the highest values in summer (3.3 +/- 2.1 ng m(-3) in June 2002) and the lowest in winter (1.7 +/- 0.6 ng m(-3) in January 2003). TGM concentrations at the SDM placement site ranged from 2 to 7 ng m(-3) and were significantly higher (p < 0.001) than those at the urban reference site. Sediment-air fluxes of Hg at the SDM placement site estimated by the micrometeorological technique ranged from -13 to 1040 ng m(-2) h(-1) (sediment to air fluxes being positive) and were significantly correlated to solar radiation (r2 = 0.81). The estimated contribution of Hg emissions from land-applied SDM to local TGM concentrations was found to be negligible (<4%). However, the estimated annual volatilization rate of TGM atthe SDM site (130 kg y(-1))was comparable to those of other industrial sources in New Jersey (140-450 kg y(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号