首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated carbons were prepared through chemical activation of corn cob precursor, using potassium hydroxide as the chemical agent. The effect of different parameters, such as particle size, method of mixing, chemical/corn ratio, activation time and activation temperature, on weight loss and BET surface area of the produced activated carbons were discussed. The porosity of the activated carbons was evaluated through nitrogen adsorption. The storage capacity of the activated carbon was evaluated using natural gas. Under the experimental conditions investigated, the optimal conditions for production of high surface area carbons by chemical activation were identified. The results were compared with commercial activated carbons from coal.  相似文献   

2.
Densification characteristics of corn cobs   总被引:4,自引:0,他引:4  
Corn cobs are potential feedstocks for producing heat, power, fuels, and chemicals. Densification of corn cobs into briquettes/pellets would improve their bulk handling, transportation, and storage properties. In this study, densification characteristics of corn cobs were studied using a uniaxial piston-cylinder densification apparatus. With a maximum compression pressure of 150 MPa, effects of particle size (0.85 and 2.81 mm), moisture content (10 and 20% w.b.), and preheating temperature (25 and 85 °C) on the density and durability of the corn cob briquettes (with diameter of about 19.0 mm) were studied. It was found that the durability (measured using ASABE tumbling can method) of corn cob briquettes made at 25 °C was 0%. At both particle sizes, preheating of corn cob grinds with about 10% (w.b.) moisture content to 85 °C produced briquettes with a unit density of > 1100 kg m-3 and durability of about 90%.  相似文献   

3.
Dye is difficult to remove from aqueous solution with common adsorbents due to its large molecular size. Mesoporous bamboo activated carbon is utilized in the adsorption of Black 5, Red E and phenol. The adsorption performance of the carbon is experimentally examined along with the characterization of the adsorbent. The comparison of adsorption capacity of the bamboo activated carbon with that of coconut activated carbon and carbon cryogel indicates that the large volume of mesopore in the carbon helps the expansion of adsorption capacity. Microscopic observation, the measurement of pore characteristics and fitting to the adsorption isotherms are conducted in the characterization of the bamboo activated carbon.  相似文献   

4.
Palm shell based activated carbon prepared by K2CO3 activation is used as precursor in the production of carbon molecular sieve by chemical vapor deposition (CVD) method using benzene as depositing agent. The influences of deposition temperature, time, and flow rate of benzene on pore development of carbon molecular sieve (CMS) and methane (CH4) adsorption capacity were investigated. The parameters that varied are the deposition temperature range of 600 to 1000 °C, time from 5.0 to 60 min, and benzene flow rate from 3.0 to 15 mL/min. The results show that in all cases, increasing the deposition temperature, time, and flow rate of benzene result in a decrease in adsorption capacity of N2, pore volume and pore diameter of CMS. The BET surface area of CMS (approximately 1065 m2/g) and the adsorption capacity of CH4 were at a maximum value at a deposition temperature of 800 °C, time of 20 min and benzene flow rate of 6 mL/min. The product has a good selectivity for separating CH4 from carbon dioxide (CO2), nitrogen (N2), and oxygen (O2).  相似文献   

5.
Growth of carbon nanofibers on activated carbon fiber fabrics   总被引:2,自引:0,他引:2  
Activated carbon fiber fabrics, an excellent adsorbent, were used as catalyst supports to grow carbon nanofibers. Because of the microporous structure of the activated carbon fibers, the catalysts could be distributed uniformly on the carbon surface. Based on this concept, the carbon nanofibers can be grown directly on the activated carbon fiber fabrics. We demonstrate that carbon nanofibers with a diameter between 20 and 50 nm for most of the fibers can be synthesized uniformly and densely on activated carbon fiber fabrics, impregnated by nickel nitrate catalyst precursor, using catalytic chemical vapor deposition. Although the carbon nanofibers are not straight with a crooked morphology, they form a three-dimensional network structure. Structure characterizations by TEM and XRD indicate that the carbon nanofibers have a turbostratic graphite structure and the graphite layers are stacked with a herringbone structure.  相似文献   

6.
In this study, to prepare a series of activated carbon-supported metals for the catalytic reduction of NOx to N2 in excess O2, activated carbons derived from lignocellulosic and herbaceous biomasses were selected as the reducing agents, and alkali and transition metals were used as the catalytic active phases. The effects of the type of biomass, carbonization temperature and catalyst composition on NOx reduction efficiency were analyzed in a fixed-bed flow reactor. The results showed that two temperature regimes are present for the NOx-carbon reaction:at temperatures below 250℃, the NOx adsorption process on the carbon surface was predominant, whereas true NOx reduction by carbon occurred at temperatures above 250℃, producing N2, CO2 and CO. The influence of the carbonization temperature on carbon reactivity depended on the effect of the carbonization temperature on the carbon surface area and the reduction of the metal species on carbon. All studied metals catalyzed both NOx and O2 reduction by carbon, and potassium could strongly enhance the C-NOx reaction without substantial carbon consumption by O2. Moreover, the potassium supported by sawdust-derived activated carbon exhibited higher selectivity and capacity towards NOx reduction than did its previously reported coal-derived counterparts. These properties were ascribed to the high dispersion of the active potassium species on the carbon surface, as observed through the comparison of X-ray photoelectron spectroscopy and powder X-ray diffraction results for the carbons made from biomass and coal-based precursors.  相似文献   

7.
Phosphoric acid activated carbon discs for methane adsorption   总被引:2,自引:0,他引:2  
M Molina-Sabio  C Almansa 《Carbon》2003,41(11):2113-2119
Phosphoric acid has been used as activating agent in the preparation of binderless activated carbon discs. The granular precursor was impregnated with different solutions of phosphoric acid, hot pressed in discs, heat treated under a flow of nitrogen and washed with distilled water to extract the excess acid. The role of the impregnation ratio and the temperature of conforming have been analysed. The discs have a bulk density higher than the granular activated carbon because there is a considerable reduction of the interparticle space, the contribution of non-microporous volume being small. The discs exhibit a high volume of microporosity accessible to both nitrogen and methane molecules. Best results (storage capacity of 131, v/v) were obtained when using an impregnation ratio XP=0.35 g phosphorous/g precursor (maximum micropore volume and minimum interparticle space) and conforming at 100 °C (higher temperatures reduce the volume of micropores). Some discs were additionally activated under a flow of carbon dioxide, the maximum methane storage capacity (near 150, v/v) being obtained when burn-off is in the 10-40% range.  相似文献   

8.
Adsorption of cationic-anionic surfactant mixtures on activated carbon   总被引:1,自引:0,他引:1  
This paper reported the adsorption of cationic-anionic surfactant mixtures, such as octyltriethylammonium bromide/sodium dodecylbenzenesulfonate (OTEAB/SDBS) and dodecylpyridinium chloride/sodium octanesulfonate (DPC/SOS), on activated carbon (AC) in deionized water and in mineralized water systems. The AC surface chemistry was characterized by X-ray photoelectron spectroscopy and ζ-potential determinations. It was observed that in deionized water solution, the addition of SOS obviously promoted the adsorption of DPC, while the existence of OTEAB increased the adsorption of SDBS first and then decreased that slightly with increasing SDBS concentration. In mineralized water solution, the addition of cationic (anionic) surfactants reduced the adsorption of anionic (cationic) surfactants. It was shown that the adsorption of the surfactants on the AC was predominated mainly by the hydrophobic interaction between AC surface and surfactants because of the low oxygen content and very low ζ-potential on the AC surface. There might exist synergism between cationic and anionic surfactants when adsorbing on AC in deionized water due to the electrostatic interaction between oppositely charged surface active ions. Such synergism might be greatly weakened when a large number of inorganic salts exist owing to the “screen” effect of the counter ions of the salt on the electrostatic attraction of oppositely charged surface active ions.  相似文献   

9.
J.M. Rosas  T. Cordero 《Fuel》2009,88(1):19-527
Activated carbon fibers were prepared by chemical activation of hemp fibers with phosphoric acid at different carbonization temperatures and impregnation ratios. Surface properties of the activated carbons fibers were significantly influenced by the activation temperature and the impregnation ratio. An increase of either of these parameters produced a high development of the porous structure of the fibers. Activated carbon fibers with apparent surface area of 1350 m2/g and mesopore volume of 1.25 cm3/g were obtained at 550 °C with an impregnation ratio of 3. The activated carbon fibers presented a high oxidation resistance, due to the presence of phosphorus compounds on the carbon surface. The oxidation resistance results suggest that C-O-PO3 and mainly C-PO3 and C-P groups act as a physical barrier, blocking the active carbon sites for the oxidation reaction.  相似文献   

10.
Activated carbon is widely used in various processes as an inexpensive and effective adsorbent. The adsorption properties of activated carbon vary with the feed materials used and the method of activation. The use of an inexpensive material and performing a suitable production method may help to generate a low cost product. Agricultural wastes could be considered as suitable raw materials for the production of activated carbon. In this work, activated carbon was produced by chemical activation with phosphoric acid of agricultural wastes such as bagasse, hard shells of apricot stones, almond, walnut and hazelnut shells. The effects of various preparation variables on both yield and quality of the prepared carbon were studied. The results showed that the selection of final activation temperature, heating rate, activation time and impregnation rate of the chemical agent was important in determining the quality of activated carbon obtained. The surface area and ash content of the activated carbon produced were compared to those of imported commercial samples. According to the results obtained, activated carbon from the hard shells of apricot stones have the best adsorption properties and the highest surface area. This activated carbon could be used in the separation of metal ions from wastewaters.  相似文献   

11.
Weifang Chen 《Carbon》2005,43(13):2742-2749
Thermal reactivation with CO2 or NH3 at temperatures higher than 700 °C effectively restored the perchlorate adsorption capacity of ammonia-tailored carbon. In contrast, steam regeneration restored only a portion of the perchlorate adsorption capacity, and these distinctions were attributed to the change in surface chemistry that was induced by regeneration. After perchlorate loading, regenerating the ammonia-tailored GAC via CO2 or NH3 preserved the nitrogen content and positive surface charge density of the initial ammonia-tailored activated carbon. In contrast, steam regeneration caused a decrease in nitrogen content and positive surface charge. Perchlorate breakthrough was monitored in rapid small-scale column test (RSSCT) operations with either CO2 or NH3 regeneration. 4000-4500 bed volumes of perchlorate adsorption life could be achieved through at least three cycles of RSSCT operation and regeneration. This compared favorably to the 4500 bed volumes that had been achieved when using the initial ammonia-tailored carbon.  相似文献   

12.
以石墨片微元构建的多孔碳材料作为活性炭的结构模型,采用巨正则蒙特卡罗方法(GCMC)和分子动力学方法(MD),从分子层面研究甲烷和甲苯在活性炭中的吸附和扩散特性. 结果表明,石墨片微元大小对多孔碳材料吸附甲烷和甲苯有一定影响,37个碳环构成的多孔碳材料是最佳的吸附结构;甲烷气体在活性炭材料中扩散较快,甲苯在活性炭中扩散较慢,随碳环碳原子数增加,气体在多孔碳材料中的自扩散系数逐渐增大;引入基团会使最优密度向高密度方向偏移,用不同基团表面改性的吸附量顺序为羟基>氨基>羧基>未改性,基团引入会改善材料的孔结构,有利于吸附量的增加.  相似文献   

13.
Abstract

H2S and CO2 are acid contaminants of natural gas and biogas, which removal have been studied using adsorption data for monocomponent and binary mixtures. However, equilibrium adsorption data for H2S?+?CO2 + CH4 mixture has not been investigated yet. In this work, H2S and CO2 partition coefficients (K) and activated carbon (AC) selectivity (S) for H2S?+?CO2 + CH4 mixture separation at high-pressure and different temperatures were determined. To reach this goal, monocomponent isotherms for H2S, CO2 and CH4 on Brazilian babassu coconut hush AC were experimentally determined at different temperatures and pressures. Then, obtained data were correlated by Langmuir and Tóth models, and multicomponent adsorption was predicted using Extended Langmuir, Extended Tóth and Ideal Adsorption Solution Theory (IAST) methods. Results indicate AC captures approximately 26?wt% of H2S or CO2. K values for CO2 and H2S reached more than 3 and 26, respectively, depending on the predictive model utilized and were higher for diluted mixtures (high CH4 content in gas phase). S values for CO2 and H2S can reach values greater than 25 for Tóth?+?IAST. Furthermore, selectivity toward H2S is approximately 5.6 times greater than CO2. The effect of temperature on multicomponent results indicate K and S values decrease as temperature increases. Therefore, results obtained herein show that is possible to separate H2S and CO2 from mixture containing CH4 using this AC as adsorbent and better separation performance was observed for low H2S and CO2 concentrations and lower temperatures.  相似文献   

14.
Activated carbons have been prepared from petroleum cokes by the combination of a chemical treatment with HClO4 or H2O2 and a chemical activation with KOH at a constant KOH/coke ratio of 3/1. The influence of different chemical treatments on the properties of the activated carbon precursors and final carbons activated with KOH was invested by using XRD, FTIR, and BET techniques. XRD results indicated that the value of interplanar distance d002 increased by chemical treatment and the disappearance of the peak corresponding to 0 0 2 faces correlated to high specific surface area. FTIR studies showed that chemical modification promoted the formation of surface oxygen functionalities. Significant effects on BET surface area, pore texture and iodine adsorption capacity were evidenced. The results show that chemical modification prior to activation dramatically increased the BET surface area and total pore volume of the resulting activated carbon. Modified petroleum coke based activated carbon with chemical activation had higher specific surface area (2336 m2/g) and better iodine adsorption value (1998 mg/g).  相似文献   

15.
Adsorption of cationic dye from aqueous solutions by activated carbon   总被引:1,自引:0,他引:1  
Batch sorption experiments were carried out to remove a cationic dye, methylene blue (MB), from its aqueous solutions using a commercial activated carbon as an adsorbent. Operating variables studied were pH, stirring speed, initial methylene blue concentration and temperature. Adsorption process was attained to the equilibrium within 5 min. The adsorbed amount MB dye on activated carbon slightly changed with increasing pH, and temperature, indicating an endothermic process. The adsorption capacity of methylene blue did not significantly change with increasing stirring speed. The experimental data were analyzed by various isotherm models, and found that the isotherm data were reasonably well correlated by Langmuir isotherm. Adsorption measurements showed that the process was very fast and physical in nature. Thermodynamic parameters such as the adsorption entropy (ΔSo) and adsorption enthalpy (ΔHo) were also calculated as 0.165 kJ mol−1 K−1 and 49.195 kJ mol−1, respectively. The ΔGo values varied in range with the mean values showing a gradual increase from −0.256 to −0.780 to −2.764 and −7.914 kJ mol−1 for 293, 313, 323 and 333 K, respectively, in accordance with the positive adsorption entropy value of the adsorption process.  相似文献   

16.
17.
With vegetal carbon as adsorbent (5% w/w), the effects of temperature (30°C and 50°C), concentration of H2O (0% and 25%) and adsorption time (0 hr, 1 hr, 2 hr, 3 hr) on the chemical characteristics of unrefinedCucurbita moschata seed oil were studied in a batch adsorption system by using a “split-plot” experimental design. With the exception of the iodine value, the chemical properties of the oil (saponification and peroxide value, carotenoid, and free fatty acids concentration) were affected significantly by interactions among the adsorption time, temperature and concentration of H2O in the adsorption system. The results suggest that the physicochemical characteristics of the oil, and therefore its functional properties, may be modified and controlled by the conditions utilized during the adsorption process.  相似文献   

18.
Activated carbons were produced from olive bagasse and their characteristics were investigated. Olive bagasse was first carbonized at 500 °C in N2 atmosphere. Then, the obtained chars were activated with steam. The effects of activation temperature and duration were examined. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. The activated carbons produced had the BET surface areas ranging from 523 to 1106 m2/g. The total pore volume was increased from 0.2981 to 0.6067 cm3/g. Adsorption capacity was demonstrated by the iodine numbers. The surface chemical characteristics of activated carbons were determined by FTIR spectroscopic method and Boehm's titration method. The microstructure of the activated carbons prepared was examined by scanning electron microscopy (SEM). The experimental data was proved that the properties of activated carbons depend on the final temperature of the process and duration of treatment at the final temperature.  相似文献   

19.
Experiments were conducted for developing suitable ANG adsorbents for vehicular applications. MIL-101 and activated carbon samples were respectively prepared by hydrothermal and chemical activation methods. Two samples were undergone structure analysis on adsorption data of nitrogen at 77.15 K, and adsorption data of methane were then volumetrically measured within temperature-pressure range 293.15 K-313.15 K and 0-8 MPa. A conformable vessel in volume 2.5 L was employed for charge/discharge tests under the flow rate 10-30 L·min-1. It shows that limit isostreic heat of methane adsorption is respectively about 25.15 kJ·mol-1 and 22.94 kJ·mol-1 on the activated carbon and the MIL-101, and isosteric heat within the experimental condition is 14-19.5 kJ·mol-1; employing a smaller charge/discharge flow rate can weaken the temperature fluctuation of the adsorbent bed and increase the charge/discharge amount; employing honeycomb heat exchanging device enhance the thermal conductivity of the adsorbent bed by consuming a negligible part of volume of the vessel. It suggests that a smaller flow rate for charge/discharge should be employed, and MOFs together with the honeycomb heat exchanging device are promising for practical applications.  相似文献   

20.
S Haydar  J Rivera-Utrilla 《Carbon》2003,41(3):387-395
An activated carbon prepared from olive stones has been modified through oxidation by nitric acid or sodium hypochlorite. These treatments introduced large amounts of oxygen groups, which were characterized by mass-spectrometry, temperature-programmed desorption (DTP-MS). Both CO2- and CO-evolving groups were created by these oxidation treatments. A part of these oxidized samples was then outgassed under vacuum up to 823 K in order to remove most of the CO2-evolving groups from their surface. Oxidized samples have a smaller surface area than the original sample. The subsequent partial outgassing increases the surface area which, however, does not reach the value it had before oxidation. p-Nitrophenol (PNP) adsorption isotherms from aqueous solutions were determined at 298 K for the original, oxidized, and partly outgassed samples. The results confirm the presence of an intermediate plateau at low equilibrium PNP concentration (at about 10 mg/l). The relative effects of textural versus surface chemistry on PNP uptakes are then discussed. The presence of CO-evolving groups showed no influence on PNP uptakes. The conclusion is that models in which carbonylic groups are basic adsorption sites for substituted phenols can be ruled out for the entire isotherm of PNP obtained with the original carbon. These models are also unlikely for PNP adsorption on oxidized and partly outgassed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号